

Niklas Lauffer

PhD Candidate | AI Safety, Multi-Agent RL, LM Agents

✉ nlauffer@berkeley.edu 🏠 niklaslauffer.github.io 🎓 niklaslauffer 📱 niklaslauffer

Education

University of California, Berkeley

PhD in Computer Science (Artificial Intelligence)

Advised by Stuart Russell and Sanjit Seshia – NSF Fellowship, CAIF Fellowship

2021 – May 2026

University of Texas at Austin

BS in Computer Science Honors and Mathematics

Dean's Honored Graduate (awarded to the top 1% of graduates) – Turing Scholars honors – 3.96/4.0 GPA

2017 – 2021

Selected Publications

ICLR 2026	• Imitation Learning for Multi-Turn LM Agents via On-policy Expert Corrections – In submission N. Lauffer , X. Deng, S. Kundurthy, B. Kenstler, J. Da
ICLR 2026	• SWE-Bench Pro: Can AI Agents Solve Long-Horizon Software Engineering Tasks? – In submission X. Deng, J. Da, E. Pan, Y. Yiming He, C. Ide, K. Garg, N. Lauffer , et al.
NeurIPS 2025	• Robust and Diverse Multi-Agent Learning via Rational Policy Gradient N. Lauffer , A. Shah, M. Carroll, S. Seshia, S. Russell, M. Dennis
Arxiv 2025	• Multi-Agent Risks from Advanced AI Hammond et al.
AAMAS 2025	• Learning Task Decompositions for Multi-agent Teams A. Shah*, N. Lauffer *, T. Chen*, N. Pitta*, S. Seshia
NeurIPS 2024	• Compositional Automata Embeddings for Goal-Conditioned Reinforcement Learning N. Lauffer *, B. Yalcinkaya*, M. Vazquez-Chanlatte, S. Seshia
Arxiv 2024	• Welfare Diplomacy: Benchmarking Language Model Cooperation G. Mukobi, H. Erlebach, N. Lauffer , L. Hammond, A. Chan, J. Clifton
NIPS GCRL 2023	• Automata Conditioned Reinforcement Learning with Experience Replay – Spotlight N. Lauffer *, B. Yalcinkaya*, M. Vazquez-Chanlatte, S. Seshia
ICML 2023	• Who Needs to Know? Minimal Knowledge for Optimal Coordination N. Lauffer , A. Shah, M. Carroll, M. Dennis, S. Russell
TAC 2023	• No-regret Learning in Dynamic Stackelberg Games. N. Lauffer , M. Ghasemi, A. Hashemi, Y. Savas, and U. Topcu.
FMCAD 2022	• Deterministic Finite Automata Decompositions from Examples and Demonstrations N. Lauffer , B. Yalcinkaya, M. Vazquez-Chanlatte, A. Shah, S. Seshia
Automatica 2021	• Training Classifiers for Feedback Control with Safety in Mind. H. Poonawala, N. Lauffer , and U. Topcu
ICAPS XAIP 2019	• Human-Understandable Explanations of Infeasibility for Resource-Constrained Scheduling Problems N. Lauffer , and U. Topcu

Work Experience

Center for Human-Compatible AI, Learn & Verify | UC Berkeley

PhD Candidate in AI Safety & Multi-Agent Learning

2021 – Present

My PhD is centered around AI safety, human-AI collaboration, multiagent reinforcement learning, and LM agents.

- Introduced [Rational Policy Gradient](#), generalizing adversarial learning algorithms to cooperative and general-sum settings.
- Developed [on-policy expert corrections](#), a method for long-horizon multi-turn LM training that mitigates covariate shift.
- Designed [benchmarks and evaluation frameworks](#) for cooperation, scheming, and deceptive behavior in LM agents.
- Led core technical sections (“Coordination”) in the *Multi-Agent Risks from Advanced AI* report.
- Built a [pretraining method](#) for learning neural representations of multi-step-plans to accelerate goal-conditioned learning.
- On the program committee for CHAI 2024 and CHAI 2025 which was attended by over 300 researchers. Led and organized all-hands meetings, planning, and talks (over 150 from internal and external speakers) for CHAI from 2023-2025.

Scale AI | Reasoning and Agents Team**Summer 2025****Research Scientist Intern in RL for LM Agents**

Interned on the Reasoning and Agents team, researching how to improve LM agent training for long-horizon, multi-turn tasks.

- Developed an efficient on-policy training scheme for multi-turn LM agents by mitigating covariate shift on long-horizon tasks.
- Improved SOTA SWE-Bench performance: 7B agents (12% → 20%), 32B agents (36% → 40%).
- Results under review at ICLR; work informs internal agent training pipelines.

Autonomous Systems Group | UT Austin**2017 – 2021****Student Researcher in Autonomous Systems**

Advised by Ufuk Topcu in the Institute for Computational Engineering and Science. As part of the Autonomous Systems Group, I developed formal and empirical approaches to decision making (MDPs, planning, RL) and control for autonomous systems.

- Published 5+ papers at top venues (CDC, ICAPS, COCOA, ACC, Automatica, Scientific Reports).
- Developed the first no-regret algorithm for learning in dynamic Stackelberg games resulting in a first-author publication at TAC.
- Built [quadcopter flight software](#) in C/C++, reinforcement learning [visualization tools](#) and a [neural controlled UAV](#) in Python.

NASA Ames Research Center**Summer 2019 and 2020****Research Intern in Planning and Scheduling**

Interned at NASA Ames Research Center in the Automated Planning and Scheduling group under Dr. Jeremy Frank.

- Project resulted in a first-author journal publication at JAIR.
- Formulated the theory behind rescheduling policies for Expected Value Probabilistic Simple Temporal Networks (EvPSTNs).
- Implemented dynamic rescheduling simulations for EvPSTNs to evaluate the effectiveness of different rescheduling policies.

Academic Service**Organizer** CHAI Workshop 2024-2025, CHAI Internship 2023-2025, CHAI All-hands 2023-2025, PSBAI NSF Workshop 2022.**Reviewer** NeurIPS 2025, ICML 2025, RLC 2025, TAC 2024, ACC 2024, AAAI 2024, CAIF Grant Making 2024-2025**Mentoring** Darius Muglich, Rupali Bhati, Mariana Meireles, Sandy Tanwisuth, Martín Soto, Thomas Chen, Nikhil Pitta**Teaching** CS188: Artificial Intelligence (2022, 2026), CS370: Homotopy Type Theory (2020)**Honors**

- 2024 • **Cooperative AI Foundation Fellowship:** Fellowship to support research in Cooperative AI
- 2023 • **NSF Graduate Research Fellowship:** Awarded to high-potential PhD students early in their career
- 2022 • **Hertz Fellowship Finalist:** One of 42 finalists selected from over 750 applicants
- 2021 • **University of Texas Dean's Honored Graduate** - highest honor awarded to 1% of graduating students
- 2021 • **Turing Scholars (Computer Science Honors)** - less than 7% of students are admitted
- 2021 • **Dean's Scholars (Math Honors)** - less than 1.5% of students are admitted
- 2021 • **Turing Scholars' Best Undergraduate Thesis Award Finalist**

Invited Talks

- Aug 2023 • **University of Maryland MARL Group:** Who Needs to Know? Minimal Knowledge for Optimal Coordination
- Aug 2023 • **Berkeley Multi-agent Learning Seminar:** Who Needs to Know? Minimal Knowledge for Optimal Coordination
- Aug 2023 • **MIT Algorithmic Alignment Group:** Who Needs to Know? Minimal Knowledge for Optimal Coordination
- Jul 2023 • **ICML 2023:** Who Needs to Know? Minimal Knowledge for Optimal Coordination
- Jun 2023 • **CHAI Workshop 2023:** Who Needs to Know? Minimal Knowledge for Optimal Coordination
- Dec 2022 • **Nissan Alliance Innovation Lab:** Learning DFA Decompositions from Examples and Demonstrations.
- Oct 2022 • **FMCAD 2022:** Learning DFA Decompositions from Examples and Demonstrations.

Technical Skills**Languages (Advanced)** Python, C, C++, Java, Bash, LaTeX**Languages (Basic)** MATLAB, R, Haskell, z/OS Assembly, HTML, CSS**Libraries (Python)** Jax, Pytorch, NumPy, SciPy, Scikit-Learn, Gym, Matplotlib, Seaborn, DGL, ROS, Gurobi, Z3**Foreign Languages** German (Fluent Reading, Fluent Speaking, Fluent Listening, Intermediate Writing)