
Human-Understandable Explanations of Infeasibility
for Resource-Constrained Scheduling Problems

Niklas Lauffer, Ufuk Topcu ∗

{nlauffer, utopcu}@utexas.edu
University of Texas, Austin

Abstract

Significant work has been dedicated to developing methods
for communicating reasons for decision-making within au-
tomated scheduling and planning systems to human users.
However, much less focus has been placed on communicat-
ing reasons for why scheduling systems are unable to arrive
at a feasible solution when over-constrained. We investigate
this problem in the context of task scheduling. We introduce
the agent resource-constrained project scheduling problem
(ARCPSP), an extension of the resource-constrained project
scheduling problem which includes a conception of agents
that execute tasks in parallel. We outline a generic framework,
based on efficiently enumerating minimal unsatisfiable sets
(MUS) and maximal satisfiable sets (MSS), to produce small
descriptions of the source of infeasibility. These descriptions
are supplemented with potential relaxations that would fix the
infeasibility found within the problem instance. We illustrate
how this method may be applied to the ARCPSP and demon-
strate how to generate different types of explanations for an
over-constrained instance of the ARCPSP.

1 Introduction
In many real-world applications, human users in charge of
developing plans and making decisions are aided by au-
tomated planning and scheduling systems. For example,
NASA mission planning makes use of a large team of hu-
man planners that use various automated scheduling sys-
tems in order to construct day-to-day as well as long-term
plans for crew members. A primary function of these au-
tomated systems is generating different types of plans and
schedules while ensuring that various constraints do not con-
flict. When plans are ultimately constructed by human plan-
ners for a human crew, it is essential for both the planners,
and the crew executing the plans, to understand how and
why certain scheduling decisions were made by automated
tools. In general, when the primary function of such con-
straint satisfaction and optimization tools is to support hu-
man decision-making, it is necessary for the automated sys-
tems to be transparent in how they arrive at certain outputs.

Significant work has been dedicated to generating human-
understandable explanations for why certain automated
planning decisions were made (Seegebarth et al. 2013).

∗This work has been supported in part by the grants NASA
NNX17AD04G and NSF 1652113.

However, little work has been done in generating reasons for
why plans or schedules cannot be generated under certain
specifications. Human users interacting with such constraint
satisfaction or optimization tools are bound to run into con-
figurations for which no feasible solution exists. Fixing in-
feasible configurations is a challenging task for the human
user if they are unable to understand why the solver arrives
at an unsatisfiable conclusion.

While various partial constraint satisfaction tools exist for
solving such over-constrained problems (Freuder and Wal-
lace 1996), solutions employing these tools have significant
limitations that make them less applicable in certain real-life
scenarios. Most of these methods employ constraint hierar-
chies to determine which constraints should be violated in
order to satisfy more important ones. However, in compli-
cated planning or scheduling applications involving multi-
ple human agents, constructing such a hierarchy is often im-
practical. Instead, if reasons for infeasibility can be properly
conveyed back to the human user, they can make high-level
decisions to solve infeasibility in any way they see fit.

In this paper, we provide a framework for iteratively gen-
erating human-understandable explanations of infeasibility
for a specific class of scheduling problems. These explana-
tions manifest themselves as minimal sets of specifications
(or constraints) that are responsible for causing infeasibil-
ity, coupled with suggestions for relaxations through which
feasibility could be achieved.

The method proposed in this paper allows users to enu-
merate over a series of explanations for infeasible instances
of problems at varying levels of abstraction. For example,
raw explanations of relevant low-level constraints may be
directly output or a causal link may be established back to
higher level descriptions of the problem to understand what
specifications were responsible for the feasibility issue. This
system also allows directed questions about feasibility to be
asked, such as “why can task A not be scheduled after task
B?”

A strategy for iteratively generating minimal unsatisfiable
sets (MUS) and maximal satisfiable sets (MSS) forms the
basis for interpreting the infeasibility of the problem. Exist-
ing methods such as QuickXplain (Junker 2004) focus on
generating a single most preferable explanation of infeasi-
bility. Likewise, (Burt, Klimova, and Primas 2018) aims to
generate a single explanation in the context of optimization



without attempting to achieve minimality. However, over-
constrained problems may contain several infeasibility is-
sues which cannot be solved by changing only a single part
of the problem. So, because a single MUS only provides
indication of a single feasibility issue, we aim to enumer-
ate several sets of MUS to highlight multiple feasibility is-
sues found within the problem instance. Therefore, the pro-
posed enumeration strategy is based on MARCO (Liffiton
et al. 2016), a flexible algorithm for generating MUSes and
MSSes in succession.

Motivated by the domain of space mission scheduling,
we introduce and investigate the agent resource-constrained
project scheduling problem (ARCPSP), an extension of the
resource-constrained project scheduling problem (RCPSP)
that incorporates the delegation of tasks to differing agents.
This problem cannot be framed as an instance of the RCPSP
because it deals with the case of asymmetric agents in which
certain tasks may only be executed by a subset of the agents.
This problem is meant to model applications in which ef-
ficient scheduling for teams of differing agents is critical.
While we only explicitly investigate this problem, the gen-
erality of the approach outlined in this paper would allow the
methodology to be adapted for different types of constraint
satisfaction and optimization tools as well as different types
of planning and scheduling problems.

The main contributions of this paper are the following:
firstly, we provide a formal definition of the agent resource-
constrained project scheduling problem (ARCPSP) in Sec-
tion 3. Then in Section 4 we outline a difference logic en-
coding of the ARCPSP which is used to check feasibility of
problem instances. The framework for generating human-
understandable explanations of infeasibility for instances of
the ARCPSP is described in Section 5. Finally, we provide
an overview of the trade-off between interpretability and ex-
pressibility of different types of explanations and conclude
by discussing how these ideas can be extended.

2 Preliminaries and Definitions
In this section, we introduce relevant background informa-
tion and definitions used throughout the paper. These con-
cepts will set the stage for formulating the ARCPSP in terms
of satisfiability modulo theory and using minimal unsatisfi-
able sets and maximal satisfiable sets to generate explana-
tions of infeasibility.

2.1 Boolean Satisfiability
Let X be a set of variables and clauses C1, . . . , Cn be for-
mulas representing constraints over X . Consider a formula
of the form

ϕ =
∧

i=1,...,n

Ci. (1)

We say the formula ϕ is satisfiable if there exists some as-
signment to the variables in X which makes ϕ evaluate to
TRUE. Otherwise, it is unsatisfiable. Note that if ϕ takes the
form of equation (1), as it does throughout this paper, every
clause Ci must be TRUE in order for ϕ to evaluate to TRUE.
To implement the temporal constraints within a schedule,
the clauses Ci are taken from the theory of difference logic

(DL), which makes deciding ϕ a satisfiability modulo the-
ory (SMT) problem. To check satisfiability of problem in-
stances, we use the Microsoft Z3 SMT solver (De Moura
and Bjørner 2008).

2.2 Difference Logic
As will be discussed in Section 4, the agent resource-
constrained project scheduling problem (ARCPSP) can be
encoded in difference logic (DL), a fragment of linear real
arithmetic (LRA). The numerical components of DL are
solvable in polynomial time (Cotton and Maler 2006) using
graph-based procedures based on an incremental Bellman-
Ford algorithm. In general, decidability for DL using these
methods is more efficient than the simplex-based methods
used to decide LRA. Under DL, atoms are restricted to the
form

x− y ≤ k for x, y ∈ X, k ∈ R. (2)

However, we can rewrite the following atoms in difference
form:

• x− y ≥ k ≡ (y − x ≤ −k)
• x− y = k ≡ (x− y ≤ k) ∧ (x− y ≥ k)

• x = y ≡ x− y = 0

Bounds x ≤ k can also be incorporated by writing them as
x− x0 ≤ k where x0 is a special variable that is later set to
zero.

2.3 Minimal Unsatisfiable and Maximal
Satisfiable Sets

Definition 1. A minimal unsatisfiable set (MUS) of a set
C of constraints is a subset M ⊆ C such that M is unsat-
isfiable and every proper subset M ′ ⊂ M is satisfiable. A
maximal satisfiable set (MSS) of a set C of constraints is a
subset M ⊆ C such that M is satisfiable and every proper
superset M ′, with C ⊇ M ′ ⊃ M , is unsatisfiable. A min-
imal correction set (MCS) of a set C of constraints is the
complement of some maximal satisfiable set of C, and can
be understood as a minimal set of constraints which need to
be removed from C in order to make it satisfiable.

It is important to note that MUSes, MSSes, and MCSes
are only locally maximal (or minimal), and are different
from concepts of globally optimal subsets. MUSes can be
understood as isolated, infeasible subsets of the constraints.
Their primary characteristic is that removing any single con-
straint would make the set satisfiable. However, this does not
necessarily guarantee the feasibility of the entire set of con-
straints because there might be many disjoint MUSes within
the set. In order to make the entire set feasible (satisfiable),
a hitting set of the MUSes must be removed. Every MCS is
precisely one combination of such a hitting set.

Definition 2. A background of a set C of constraints is a
subset B ⊆ C of hard constraints, which must be necessar-
ily satisfied. In the context of scheduling problems, back-
grounds typically include constraints that ensure that the
outcome of the schedule is logical, including conditions such
as tasks not overlapping and resource constraints not being
exceeded. We denote everything outside of the background



M \ B as the foreground. Hence, the background and fore-
ground partition the set C of constraints.

A minimal conflict of an over-constrained set C of con-
straints with respect to a background B is then a subset of
the foreground M ⊂ C \B such that M ∪B is unsatisfiable
and, for any superset M ′ ⊃M , M ′∪B is satisfiable. A min-
imal relaxation of an over-constrained set C of constraints
with respect to a background B is a subset of the foreground
M ⊂ C \B such that (C \M)∪B is satisfiable and, for any
superset M ′ ⊃ M , (C \M ′) ∪ B is unsatisfiable. Then an
explanation is a sequence of minimal conflicts and minimal
relaxations for a problem instance.

The definitions of minimal conflicts and minimal re-
laxations mirror the concepts of MUSes and MCSes, re-
spectively, while incorporating a background of constraints
which cannot be modified. A background is necessary for
specifying hard constraints which cannot be relaxed or mod-
ified. This way we can prevent certain constraint from con-
sideration for conflicts or relaxations. A background also al-
lows the generation of explanations concerning different as-
pects of a scheduling problem instance, a concept which will
be explored later in the paper.

3 Problem Description
The problem that we formulate is an extension of the
resource-constrained project scheduling problem (RCPSP).
Loosely, the RCPSP considers nonpreemptive, precedence-
constrained tasks of known durations that are constrained
by reusable resource requirements (i.e. resources that are re-
turned after a task stops using them). The agent resource-
constrained project scheduling problem extends the RCPSP
to include a set number of agents that execute the tasks in
parallel, subject to certain compatibility constraints. Addi-
tionally, while the RCPSP generally cares about optimizing
the total makespan of the schedule, we instead introduce a
set start and end time for each scheduling instance and only
focus on its feasibility (i.e. whether or not all tasks can be
completed within this specified time frame).

3.1 The Agent Resource-Constrained Project
Scheduling Problem

An instance of an agent resource-constrained project
scheduling problem (ARCPSP) is defined by a tuple
(M,J, s, p, U,E,R,B, b), where the components are de-
fined as follows.

– M = {M1,M2, · · · ,Mm} is a set of agents.

– J = {J1, J2, · · · , Jn} is a set of non-preemptive (unin-
terruptible) tasks.

– s = [(a1, b1), (a2, b2), · · · , (an, bn)] are the allowable
time ranges in which the tasks should be executed, where
ai, bi ∈ N.

– p = [p1, . . . , pn] is a vector of the durations of tasks J ,
where pi is the duration of task Ji.

– U = {U1, U2, · · · , Un} is the compatibility set for the
tasks. Each task Ji can be completed by a subset Ui ⊆M
of agent.

– E ⊆ J × J is a set of precedence relations. (Ji, Jj) ∈ E
if and only if task Ji must terminate before task Jj begins.
Precedence relations must be defined in a consistent way
(by respecting the transitive property).

– R = {R1, R2, · · · , Rq} is a set of reusable resources.

– B ∈ Nq represents the total availability of the resources
R. The tasks that share resource Bi are mutually exclusive
if Bi = 1.

– b ∈ Nn×q represents the resource demands of tasks where
task Ji requires bi,j units of resource Rj during its execu-
tion. The total demand of resource Rj at anytime cannot
exceed its total availability Bj .

A schedule (S,A) = ({S1, S2, · · · , Sn}, {A1, A2, · · · , An})
is a solution to an instance of an ARCPSP, where Si and
Ai are the start time and the assigned agent of task Ji, re-
spectively. A schedule is feasible if it satisfies the following
constraints:

• No agent has overlapping tasks,(
Si + pi ≤ Sj

)
∨
(
Sj + pj ≤ Si

)
(3)

∀i, j ∈ (1, . . . , n) such that Ai = Aj .

• Every task falls within its allowable time frame(
si,1 ≤ Si

)
∧
(
Si + pi ≤ si,2

)
∀Si ∈ S. (4)

• The activities are assigned to compatible agents

Mi ∈ Ui ∀Mi ∈ A. (5)

• The precedence relations are met

Si + pi ≤ Sj ∀(Ji, Jj) ∈ E. (6)

• The resource constraints are satisfied, let Jt = {Ji ∈
J | Si ≤ t < Si + pi} represent the set of tasks being
executed at time t, then∑

Ji∈Jt

bi,j ≤ Bj ∀Rj ∈ R, ∀t ≥ 0. (7)

4 SMT Formulation
The constraints of the ARCPSP can be formulated in terms
difference logic in the following way. Constraint (3) can be
rewritten as

(Si − Sj ≤ −pi) ∨ (Sj − Si ≤ −pj) ∨ ¬(Ai = Aj) (8)

∀Si, Sj ∈ S. Constraint (4) can be rewritten as

(si,1 ≤ Si) ∧ (Si ≤ si,2 − pi) ∀Si ∈ S, (9)

and constraint (6) can be rewritten as

Si − Sj ≤ pi ∀(Ji, Jj) ∈ E. (10)

By representing the agents as integers Mi ∈ N, constraint
(5) can be rewritten as∨

u∈Ui

Mi = u ∀Mi ∈ A (11)



Figure 1: A feasible solution to Example 1.

Encoding the resource constraints is slightly more challeng-
ing. For mutually exclusive constraints (Bi = 1), the tasks
that share a resource can simply be encoded as not being al-
lowed to be executed at the same time. That is, constraint (7)
can be rewritten as

(Si − Sj ≤ −pi) ∨ (Sj − Si ≤ −pj) (12)

∀bi,k, bj,k = 1,∀Rk ∈ R. We can generalize this idea to
non-mutually exclusive constraints through the concept of
minimal forbidden sets. First introduced by (Möhring and
Stork 2009), forbidden sets are unsatisfiable sets with re-
spect to resource constraints only. They represent the sets of
tasks that cannot be simultaneously scheduled because they
would otherwise exceed the availability of some resource
constraint. The essential feature of a minimal forbidden set
is that a single task can be rescheduled to another time to
make the set respect the resource constraint.

Therefore, given a minimal forbidden set J∗, we would
like to encode a constraint requiring that they cannot all be
executing at the same time∨

Ji∈J∗

¬(Ji ∈ Jt) ∀t ≥ 0 (13)

where Jt = {Ji ∈ J | Si ≤ t < Si + pi} represents the set
of tasks being executed at time t. This encoding is similar to
methods which encode the RCPSP in terms of linear arith-
metic (Bofill et al. 2016), but this requires discretizing time
and incurs a cumbersome number of constraints if there are
a large number of time-points. Moreover, equation (13) can-
not easily be formulated in terms of difference logic. Instead,
we can reformulate the constraint as there being at least two
tasks in J∗ that do not overlap∨

Ji∈J∗

∨
Jj∈J∗

(Ji + pi ≤ Jj) ∨ (Jj + pi ≤ Ji) (14)

for every minimal forbidden set J∗. This constraint is logi-
cally equivalent to requiring that at any time-point, there be
at least one task in each minimal forbidden set that is not
being executed.

Constraining all of the minimal forbidden sets, a subset
of all of the forbidden sets, is sufficient to prevent resource
conflicts because every forbidden set is a superset of some
minimal forbidden set. Algorithms exist for computing all

minimal forbidden sets (Stork and Uetz 2005) so we will
not discuss such a computation here.

Encoding resource constraints as forbidden sets is effi-
cient in the context of the ARCPSP in comparison to other
methods, such as equation (13). This is primarily because
of the computational advantage achieved by difference logic
over other theories such as linear real arithmetic and the en-
coding not requiring a discretization of time. Representing
resource constraints as minimal forbidden sets also provides
an explicit representation of resource constraints in terms of
MUSes. If a resource constraint appears in an explanation,
we can represent it as the minimal forbidden set which is
being violated. For example, if a resource constraint consti-
tutes a component of some MUS, it will be represented as
some subset {A,B,C} of tasks, meaning that tasks A,B,
and C cannot be scheduled at the same time because they
would violate a resource constraint.
Example 1. Scheduling astronauts aboard the ISS
We model the problem of scheduling astronauts aboard the
International Space Station (ISS) as an instance of the AR-
CPSP for which the elements of M = {M1,M2, · · · ,Mm}
represent the crew members. We consider the case of m = 6
astronauts. The bounds on task execution are from minute
120 to 840; the sleeping related tasks outside of this bound
are fixed so are not a part of the problem instance. The avail-
ability of the power resource, is 1000 units. The tasks are
divided into different categories:
– There are 6 laboratory tasks, each of duration 120

with allowable time ranges of (120, 840), the entire
work day. However, they have precedence constraints
{(JLi , JLi+1) | 1 ≤ i < 6}, each laboratory task must
be completed before the next one begins. Each laboratory
task can be completed by any astronaut, so the compati-
bility set is all of the astronauts. Each laboratory task also
has a power requirement of 400 units.

– There are m weights and m treadmill tasks, one for each
agent, each of duration 75. They have allowable time
ranges of (180, 720). Each weight and treadmill task must
be completed by a unique astronaut so their compatibil-
ity sets can be specified by letting the ith task only be
completed by astronaut Mi. However, there is only one
set of weights and treadmill equipment, so we can de-
fine reusable resources RW and RT both with availability



BW , BT = 1, respectively. Each treadmill task also has a
power requirement of 200 units.

– There are m meal tasks. They have allowable time ranges
of (420, 540). Similar to the exercise tasks, each one must
be completed by a unique astronaut so their compatibility
sets can be specified by letting the ith meal task only be
completed by astronaut Mi.

– Several miscellaneous tasks, deploy cubesat, col-
lect sample, hardware gather, and eva suit test with
durations 60, 60, 120, and 120 respectively, do not fall
into any particular group. These tasks have an allowable
time range of (120, 840) and can all be completed by
any astronaut. They require 400, 500, 400, 400 units of
power, respectively.

A feasible schedule for this instance of the ARCPSP is visu-
alized in Figure 1.
Example 2. An Infeasible Modification
We modify the previous example slightly to produce an
unsatisfiable problem instance. If we change the duration
of each laboratory task from 120 to 121, we get an over-
constrained system of constraints for which no feasible
schedule exists. We’ll use this running example to produce
explanations in the next several sections.

5 Subset Enumeration:
Finding Conflicts and Relaxations

The proposed strategy for enumerating subsets is based on
MARCO (Liffiton et al. 2016) over other systems such as
CAMUS (Liffiton and Sakallah 2008) because outputting at
least some MUSes quickly is more important than explicitly
generating every MUS. MARCO relies on four main func-
tions to explore the feasibility of a power set lattice of con-
straints which we outline here in the language of conflicts
and relaxations.
– BlockUp - Called whenever a conflict is found. Marks

every supersets of the current set, preventing it from being
explored later on.

– BlockDown - Called whenever a relaxation is found.
Marks every subsets of the current set, preventing it from
being explored later on.

– Grow - If the current set is satisfiable, adds constraints
to the current set until adding any other constraint would
make it unsatisfiable.

– Shrink - If the current set is unsatisfiable, removes con-
straints from the current set until removing any other con-
straint would make it satisfiable.

A power set lattice of Boolean variables representing each
constraint in the foreground is maintained throughout the
execution of the algorithm. First, a random subset of con-
straints is constructed by choosing a point in the Boolean
lattice. Then the SAT solver checks whether the set is SAT
or UNSAT. If the resulting assignment is SAT (feasible),
then constraints are iteratively added to the current set un-
til a minimal relaxation is found. If the initial set is instead

{C1, C3, C4}

{C3, C4} {C1, C4} {C1, C3}

{C4} {C3} {C1}

∅

Figure 2: The power set lattice of {C1, C3, C4} with
background C2 and corresponding relaxation (green)
and conflict (red).

UNSAT (infeasible), constraints are iteratively removed un-
til a minimal conflict is found. After a minimal conflict is
found, BlockUp is called, removing any supersets of the
minimal conflict from consideration in the lattice. We can
do this because any superset of a conflict must be unsatis-
fiable because it contains the conflict. The opposite direc-
tion also applies, any subset, after a minimal relaxation has
been removed, must be satisfiable so we can rule them out
of consideration. Hence, after a minimal relaxation is found,
we BlockDown, removing any subsets from consideration
in the lattice. Then a new satisfying assignment is pulled
from the remaining sections of the boolean lattice and new
conflicts and relaxations are generated until the entire lattice
is blocked or the algorithm times out.

Example 3. A Small Over-Constrained Formula

Consider the unsatisfiable conjunction of the following set
of clauses,

C1 = {a}, C2 = {¬a}, C3 = {¬a ∨ b}, C4 = {¬b}

with background B = {C2}. We’ll use this example to step
through an execution of the subset enumeration algorithm.
A visualization of the associated Boolean lattice is shown
in Figure 2. A random initial seed has us start with clause
{C1, C3} and the SAT solver says it’s UNSAT. We then
Shrink and remove C3 from the set and the SAT solver says
{C1} is still UNSAT and minimal. We then output this mini-
mal conflict {C1}. Because this set is now minimal, we can
BlockUp, removing supersets {C1}, {C1, C3}, {C1, C4},
{C1, C3, C4} from consideration. We then choose a new
seed, let’s say {C3}. The resulting set is SAT so we Grow to
the set {C3, C4} which is then SAT and maximal so we can
BlockDown subsets {C4}, {C3}, {∅} and output {C1}, the
complement of {C3, C4}, as a relaxation. The lattice is then
entirely blocked off so we terminate with the single conflict
and relaxation. Figure 2 shows the power set lattice of the
foreground along with the corresponding relaxation (green)
and conflict (red).



5.1 Background Constraints for the ARCPSP
The standard background for the ARCPSP involves con-
straints to ensure that the resulting schedule is logical. This
way, the foreground only involves constraints which can be
altered by parameters that are controlled by the user.

– New variables S0 and Sm+1 are introduced that mark
the beginning and end of the schedule bounds. These
variables prevents the subset enumeration from relaxing
the temporal constraints of tasks outside of the feasible
bounds of the schedule

(S0 ≤ Si) ∧ (Si + pi ≤ Sn+1) ∀Si ∈ S. (15)

– Each task is assigned to some existing agent. Without this
constraint, the solver could assign tasks to a nonexistent
agent to solve conflicts

Mi ∈M ∀Mi ∈ A. (16)

– No agent has overlapping activities. Disallowing the
solver from consider cases in which tasks can overlap pre-
vents it from generating meaningless results. This condi-
tion is precisely constraint (3).

We will refer to this background set of constraints through-
out the following section.

5.2 Constraint Explanations
The method of generating minimal conflicts and relaxations
can be applied to both sets of individual constraints and, by
modifying the background, sets of tasks. In this section, we
investigate the first case, which we call constraint explana-
tions. Following the strategy in the beginning of Section 5,
we enumerate only over the constraints that are in the fore-
ground, as specified in Section 5.1. That is, we consider con-
straints timeframe, compatibility, precedence,
and resource referring to equations (4), (5), (6), and (7),
respectively, for each task in the schedule. The rest of the
constraints are implied as a part of the background because
they only correspond to imposing a logical structure on the
solution, not constraining the parameters of the schedule.
Hence, the Boolean lattice which is enumerated over con-
tains only these four types of constraints.

The outputs for constraint explanations are formatted as
a tuple of the relevant tasks followed by a constraint type.
For example, (LAB 0, LAB 1) precedence refers to
the precedence constraint between the first and second lab-
oratory tasks. When a constraint is only relevant to a sin-
gle task, we write the task followed by the constraint type
(e.g., MEAL 0 compatible refers to the agent compati-
bility constraint for the first meal task).

The full constraint explanation for Example 2 includes 14
minimal relaxations and 3 minimal conflicts. Figure 3 shows
a representative part of this full constraint explanation. The
omitted conflicts and relaxations are identical in structure to
the ones shown in Figure 3 and give practically redundant
information. Computing the set of minimal forbidden sets
took 2.11 seconds and calculating the full explanation took
1.57 seconds.

Constraints
Confl 1 {(LAB 0,LAB 1) precedence,

(LAB 1,LAB 2) precedence,
(LAB 2,LAB 3) precedence,
(LAB 3,LAB 4) precedence,
(LAB 4,LAB 5) precedence }

Relax 1 {(LAB 3, LAB 4) precedence}
Confl 2 {(LAB 1,LAB 2) precedence,

(LAB 2,LAB 3) precedence,
(LAB 3,LAB 4) precedence,
(LAB 4,LAB 5) precedence,
MEAL 0 compatible,
MEAL 1 compatible,
MEAL 2 compatible,
MEAL 3 compatible,
MEAL 4 compatible,
MEAL 0 timeframe,
MEAL 1 timeframe,
MEAL 2 timeframe,
MEAL 3 timeframe,
MEAL 4 timeframe}

Relax 2 {(LAB 4, LAB 5) precedence,
MEAL 4 timeframe}

Figure 3: Constraint explanations for Example 2.

In this example, relaxations provide the user with minimal
ways in which constraints could be changed to fix the sched-
ule. Meanwhile, conflicts give insight into why infeasibility
is occurring. For example, Relex 1 indicates that remov-
ing the precedence between laboratory task 3 and 4 would
make the schedule feasible. However, Confl 1 indicates
that the precedence between all of the laboratory tasks does
not fit in the schedule. A user could use this latter informa-
tion to alter the original parameters of the schedule rather
than having to void an entire task or constraint. One possi-
ble solution could be extending the length of the schedule
or shortening the length of some of the laboratory tasks, an
option which is not revealed by relaxations alone.

This formulation of explainability in terms of conflicts
and relaxations also allows a user to ask pointed questions
concerning the feasibility of an instance of an ARCPSP
problem. Given a feasible instance of a problem, such as
Example 1, specific questions may be asked about infeasible
modifications of the problem. The modification in Example
2 is gotten by extending the lengths of the laboratory tasks.
Hence, the explanation in Figure 3 may be interpreted as an
answer to the question: “why can the laboratory tasks not
have a duration longer than 120 minutes?”

5.3 Implication-Based Enumeration
In the following sections we explore two variations of the
subset enumeration algorithm to generate higher-level de-
scriptions of infeasibility. This is accomplished by pushing
every constraint to the background and populating the fore-
ground with a fresh set of Boolean variables. Then, a set
L of constraints can be constructed that encodes a logical



relationship between the new symbolic variables in the fore-
ground and the actual constraints in the background.

The set L of logical relations linking symbolic variables to
the constraints also becomes part of the background. Then,
only the set of Boolean variables remains to be enumerated
over in the foreground. In practice, this can be accomplished
by replacing the Boolean lattice outlined in Section 5 by the
symbolic lattice composed of the new variables. This en-
ables the generation of explanations concerning these sym-
bolic variables, which is dependent on the relationship L.

Depending on what kinds of constraints populate the fore-
ground, the size of the Boolean lattice which needs to be
enumerated over can be greatly reduced. This reduces the
number of calls that need to be made to the SMT solver
before arriving upon conflicts and relaxation. Additionally,
these type of explanations can reduce redundancies and pro-
duce more compact descriptions of infeasibility. The follow-
ing section outlines how this concept can be applied to gen-
erate minimal conflicts and relaxations of sets of tasks.

5.4 Task Explanations
Task explanations can be generated by replacing the fore-
ground (and hence, the power set lattice) with a set of vari-
ables representing individual tasks. We introduce a Boolean
variable for each task and separate the constraints of the
ARCPSP into two classifications: individual and relational.
Constraints (4) and (5) as well as constraints (15) and (16)
are individual constraints, involving only a single task. Con-
straints (6), (7), and (3) are relational constraints, involving
multiple tasks. We then encode the constraint that the truth
of each task’s Boolean variable Jj implies the truth of every
one of its individual constraints

Jj =⇒ Ij (17)
where Ij represents a conjunction of the task’s timeframe
(4), compatibility (5), and feasibility (15, 16) constraints.
Visually we can represent the implication as follows, where
LAB 1 represents a Boolean variable and arrows represent
logical implications:

LAB 1

LAB 1 compatible

LAB 1 timeframe

LAB 1 feasibility

For the relational constraints, we add the condition that the
truth of all of the dependent tasks’ Boolean variables implies
its truth. So if relational constraint C1 is between task J1 and
J2, then we impose the constraint J1 ∧ J2 =⇒ C1 in the
same manner as outlined above:

LAB 1
∧

LAB 0
)(

(LAB 0, LAB 1) precedence

(LAB 0, LAB 1) resource

(LAB 0, LAB 1) overlap

Tasks
Confl 1 {LAB 0, LAB 1, LAB 2, LAB 3,

LAB 4, LAB 5}
Relax 1 {LAB 1}
Confl 2 {LAB 1, LAB 2, LAB 3, LAB 4,

LAB 5, MEAL 0, MEAL 1, MEAL 2,
MEAL 3, MEAL 4}

Relax 2 {LAB 5, MEAL 0}

Figure 4: Task explanations for Example 2.

Hence, individual constraints need only be satisfied if their
associated task’s Boolean variable is true and relational con-
straints need only be satisfied if all of their associated tasks’
Boolean variables are true. Through this logical relationship,
we can now enumerate over these Boolean variables, each of
which conceptually represents a task. As the Boolean vari-
ables are toggled on and off, the associated constraint lattice
becomes constrained as if the schedule had been constructed
with only that subset of tasks. Executing the enumeration
algorithm over this modified foreground for the same over-
constrained problem (Example 2) produces a similar set of
conflicts and relaxations, part of which is shown in Figure 4.
The full explanation includes 3 minimal relaxations and 17
minimal conflicts in total. It took 4.03 seconds to compute
the minimal forbidden sets and 0.55 seconds to compute the
full explanation.

Here, the task and constraint explanations are quite sim-
ilar, but this is not always the case. The task explanations
can often be much more compact than the constraint expla-
nations because each variable represents many constraints.
For similar reasons, the number of total conflicts and relax-
ations is often greatly reduced. Because of this, task expla-
nations can give more straight forward explanations for the
over-constrained problem, but they lack the granularity of
the constraint explanations. For example, with the constraint
explanations we were able to diagnose that the precedence
between the lab tasks was creating an issue rather than a re-
source or other constraint. The task explanations leave out
this detail, sacrificing expressibility for interpretability.

5.5 Specification Explanations
In order to draw explanations back to a high-level interpre-
tation of the problem, the foreground can be replaced by a
set of human-written specifications. This further reduces the
size of the power set lattice that is constructed out the fore-
ground and reduces redundancy in the generated conflicts
and relaxations.

Tasks are often formed in groups which share certain
scheduling specifications. For example, the meal tasks in
Example 1 all share the same parameters except that they
are assigned to unique astronauts. When Example 1 was de-
scribed, such similar tasks were naturally formulated in dif-
ferent categories (e.g., meal, weights, etc.). Hence, specifica-
tions for tasks may be more succinctly expressed by making
use of these similarities.

An informal, human written list of constraints specifying



Specifications
Confl 1 {Lab tasks must happen in

sequence, the scheduling
horizon is 6am to 6pm}

Relax 1 {Lab tasks must happen in
sequence}

Relax 2 {The scheduling horizon is
6am to 6pm}

Figure 5: Specification explanations for Example 2.

the parameters of Example 1 could be as follows:

– The scheduling horizon is 6am to 6pm.

– Meal tasks must be scheduled between 1pm and 2pm.

– Lab tasks must happen in sequence.

– Each meal/treadmill/weights task must be assigned to a
different astronaut.

– Weights/treadmill tasks cannot happen 60 minutes before
pre-sleep.

– No more than 1000 units of power may be drawn at once.

– The treadmill tasks require 200 units of power.

– Tasks EVA SUIT TEST, HW GATHER, C-SAT, and
SAMP require 400, 400, 500, and 400 units of power.

– There is only one set of weights and treadmill equipment.

Then a relevant logical relationship may be drawn back
to the actual set of constraints for each such specification.
For example, the precedence relations between the lab tasks
could be related through:

“Lab tasks
must happen
in sequence.”

(LAB 0, LAB 1) precedence

(LAB 1, LAB 2) precedence

(LAB 2, LAB 3) precedence

(LAB 3, LAB 4) precedence

(LAB 4, LAB 5) precedence

(LAB 5, LAB 6) precedence

Similar constraints may be encoded for the rest of the spec-
ifications, which compose the set L linking the human writ-
ten specifications to the actual constraints of the problem.
This construction allows the generation of specification ex-
planations. The specification explanation for Example 1 is
displayed in Figure 5. Notice the greatly reduced size of the
specification explanation. Unlike the constraint and task ex-
planation, the specification explanation does not suffer from
producing many redundant conflicts and relaxations.

A fundamental trade-off exists between the expressibil-
ity and interpretability of different kinds of explanations.
Low-level explanations involving constraints provide de-
tailed reasons for infeasibility but may be difficult for a hu-
man user to parse or understand. In contrast, because the

high-level specification explanations correlate directly with
the types of constraints which a human planner may think
in, they potentially provide more direct and concise infor-
mation to the user. However, they lack the fine tuned gran-
ularity of information that constraint and task explanations
provide. For example, if only a single precedence constraint
between the laboratory tasks was causing an issue, the spec-
ification explanation would obscure which of the constraints
is responsible.

6 Conclusion

We introduced the agent resource-constrained project
scheduling problem (ARCPSP) along with an associated dif-
ference logic encoding. We proposed a general framework
for generating minimal conflicts and minimal relaxations
based on the MARCO algorithm and demonstrated how it
could be used to generate varying types of descriptions for
why infeasibility is occurring in instances of the ARCPSP.
The framework outlined in this paper is general enough to
be applied to constraint satisfaction formulations for various
other scheduling and planning problems. These ideas may
potentially be further extended to different kinds of formal
languages, such as linear temporal logic, that are used to de-
scribe planning problems.

6.1 Future Work

In an interactive system, such as a scheduling software,
when a user attempts to make an infeasible modification, it
may be useful to generate a reason for the infeasibility in
real time. Similarly, a user could query whether a modifica-
tion to a feasible schedule would preserve feasibility and, if
not, why not? Explanations similar to the ones constructed
throughout this paper may likely be used to such an effect.
Investigating methods for synthesizing natural language sen-
tences out of the explanations is also subject to future re-
search.

Following the goal of QuickXplain (Junker 2004), given
a partial ordering of constraint or task importance, preferred
conflicts and relaxations may be explored earlier and full
explanations may list conflicts and relaxations in preferen-
tial order. Such functionality would be especially useful in
cases for which generating the full explanation is intractable.
A preferential ordering of explanations may be achieved
by adding and removing constraints during the Grow and
Shrink steps based on the constraint preference ordering.
Similarly, methods for enumerating disjoint (or otherwise
distinct) conflicts may also be useful for producing a rep-
resentative set of conflicts as concisely as possible.

Currently, the most limiting bottleneck for scaling to
larger problem instances comes from the number of minimal
forbidden sets which can grow exponentially with the num-
ber of tasks. Certain lazy clause generation algorithms (La-
borie 2003) may be used to represent resource constraints in
a more efficient manner. Such representations may also be
adapted to implement consumable resources in an explain-
ability setting.



References
Bofill, M.; Coll, J.; Suy, J.; and Villaret, M. 2016. Solv-
ing the multi-mode resource-constrained project scheduling
problem with SMT. In 2016 IEEE 28th International Con-
ference on Tools with Artificial Intelligence (ICTAI), 239–
246.
Burt, C.; Klimova, K.; and Primas, B. 2018. Generating
explanations for mathematical optimisation: Solution frame-
work and case study. In ICAPS 2018 Workshop on Explain-
able Planning (XAIP).
Cotton, S., and Maler, O. 2006. Fast and flexible difference
constraint propagation for dpll(t). In Biere, A., and Gomes,
C. P., eds., Theory and Applications of Satisfiability Testing
- SAT 2006, 170–183. Berlin, Heidelberg: Springer Berlin
Heidelberg.
De Moura, L., and Bjørner, N. 2008. Z3: An efficient
SMT solver. In Proceedings of the Theory and Prac-
tice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Sys-
tems, TACAS’08/ETAPS’08, 337–340. Berlin, Heidelberg:
Springer-Verlag.
Freuder, E. C., and Wallace, R. J. 1996. Partial constraint
satisfaction. In Jampel, M.; Freuder, E.; and Maher, M.,
eds., Over-Constrained Systems, 63–110. Berlin, Heidel-
berg: Springer Berlin Heidelberg.
Junker, U. 2004. Quickxplain: Preferred explanations and
relaxations for over-constrained problems. In AAAI.
Laborie, P. 2003. Algorithms for propagating resource con-
straints in ai planning and scheduling: Existing approaches
and new results. Artificial Intelligence 143(2):151 – 188.
Liffiton, M. H., and Sakallah, K. A. 2008. Algorithms
for computing minimal unsatisfiable subsets of constraints.
Journal of Automated Reasoning 40(1):1–33.
Liffiton, M. H.; Previti, A.; Malik, A.; and Marques-Silva,
J. 2016. Fast, flexible mus enumeration. Constraints
21(2):223–250.
Möhring, R., and Stork, F. 2009. Stochastic project schedul-
ing under limited resources: A branch and bound algorithm
based on a new class of policies.
Seegebarth, B.; Müller, F.; Schattenberg, B.; and Biundo, S.
2013. Making hybrid plans more clear to human users —
a formal approach for generating sound explanations. In
Proceedings of the Twenty-Second International Conference
on International Conference on Automated Planning and
Scheduling, ICAPS’12, 225–233. AAAI Press.
Stork, F., and Uetz, M. 2005. On the generation of circuits
and minimal forbidden sets. Math. Program. 102(1):185–
203.


