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Abstract. Scheduling tasks with variable durations across multiple
agents is an NP-hard problem for even two agents. Typically, the run-
time of any exact algorithm is dominated by the number of tasks because
of an exponential dependence. We shift this exponential dependency from
the number of tasks to a new parameter, which we call window length.
This novel parameterization enables to reduce the problem of finding
an optimal schedule to one of searching for winning strategies in a two-
player reachability game on graphs of size polynomial in the number of
tasks. As such, the complexity of finding an optimal schedule is polyno-
mial in the number of tasks but exponential in the window length. We
demonstrate that, in practice our algorithm runs faster than the worst-
case complexity. The approach we present is applicable for most common
optimization criteria, such as minimization of makespan and total load.
We demonstrate the practical value of this technique by finding optimal
schedules for astronauts aboard the International Space Station. Finally,
experiments on randomly generated instances show that, on average,
this technique is at least two orders of magnitude faster than an integer
program formulation.

Keywords: Multi-agent scheduling · Graph games · Variable
durations · Linear optimization criteria · Schedulability

1 Introduction

We aim to understand the role of task structure in the complexity of finding an
optimal schedule for the agent resource-constrained project scheduling problem
(ARCPSP) with variable task durations [14]. The ARCPSP is an extension of
the resource-constrained project scheduling problem (RCPSP) with a notion of
agents that execute tasks in parallel. The problem includes lower and upper limits
for each task’s duration. Therefore, scheduling also involves assigning execution
durations from the interval for each task.
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The ARCPSP is a combinatorial optimization problem and is NP-hard for
even two agents [17]. It is possible to solve the problem efficiently if one can
divide the planning horizon into smaller time windows so that tasks start and
end within individual windows. However, this condition is often impractical and
tasks do spillover. We relax this restrictive condition. Specifically, we allow such
spillovers but limit them to the next window, but not the windows beyond.
This relaxed condition is natural in many scheduling scenarios. We describe two
of them here. Consider software development teams (a group of agents) that
aim to create software through sprints. A sprint is a short time period when a
team works to complete a number of tasks. Ideally, tasks that start in a sprint
(window) should end in the same sprint. However, it is not always possible to
satisfy this condition. In practice, task spillovers are pushed to the next sprint
and special efforts are made to avoid additional spillovers [13]. Consider a second
scenario where tasks correspond to goods being delivered to customers by a fixed
number of agents. After a customer chooses her delivery slot, the company has to
ensure that the deliveries are performed with minimal latencies. In other words,
the task spillovers are restricted.

In Sect. 2, we introduce a new parameter which we call window length (Δ).
The window length is chosen such that task spillovers are restricted to adjacent
windows. More specifically, the window length is the smallest integer such that
tasks that start in a window only spillover to the next window but not the
windows after. This parameterization enables to encode all feasible schedules as
paths in a graph of size polynomial in the number of tasks. An alternate notion
of windows has been used to restrict the difference between the start times of
various tasks, when the task durations are fixed [19]. However, we use windows
to restrict the length of individual tasks.

Uncertainty is prevalent in scheduling due to a lack of accurate process mod-
els and variability on the process and environmental data [11]. As such, it is
impossible to estimate the durations for tasks without uncertainty. Following
[15], we model the uncertainty in the task durations by allowing the tasks to
have variable durations. In this paper, we compensate for such uncertainty by
allocating each task the maximum permissible duration while simultaneously
ensuring that the resulting schedule does not violate the resource constraints.

We study optimization criteria defined as functions on non-idling durations
of individual agents. Due to the high complexity of the problem, such objectives
are seldom studied even if they have a wide range of practical applications. For
example, such optimization criteria enable to assign weights to agents to give
preference to schedules that maximize the use of agents with higher weights. In
Sect. 5, we find optimal schedules for astronauts aboard the International Space
Station (ISS). We model a scenario where some of the astronauts can be ill or
injured and try to minimize the assignment of tasks to such astronauts while
simultaneously finding a schedule that maximizes the execution time for the
tasks.

We cast the problem of finding an optimal schedule as a two-player reacha-
bility game on graphs of size polynomial in the number of tasks. In the context
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of scheduling, reachability games have previously been used for finding feasible
schedules for sporadic tasks [7]. On the other hand, we use these games to find
optimal schedules. In Table 1, we list the complexities of finding optimal sched-
ules for different optimization criteria when the window length Δ and the number
of agents k are fixed constants. The definition of Δ implies that the planning
horizon H is O(2nΔ), where n is the number of tasks (we assume that there are
no empty windows). Even though the worst-case complexities are exponential
in k and Δ, the experiments in Sect. 5 show that we can find optimal schedules
for five agents that have to complete 100 tasks within a day, in under a minute,
when a) each time step is ten minutes long b) the maximum duration of every
task is at most five hours and c) the difference between the earliest start time
and latest start time for every task is at most five hours.

Table 1. The complexity of finding optimal schedules. H is the length of the planning
horizon, k is the number of agents and Δ is the window length.

Type of optimization Complexity

None (feasibility) Ok,Δ(H)

Linear function Ok,Δ(H3)

Min total load OΔ(Hk+2)

Min makespan Ok,Δ(H3)

In Sect. 5, we validate the technique for different objectives on randomly
generated instances. The experiments show that the technique works well, even
for a large number of tasks and long planning horizons. Lastly, we compare our
technique against an integer programming encoding of the problem that we run
in Gurobi [10]. Experiments show that the technique is at least two orders of
magnitude faster.

2 The Agent Resource-Constrained Project Scheduling
Problem and Windows

An instance I of the agent resource-constrained project scheduling problem is a
tuple (A, T ,D,S, C, B,R) defined as follows.

– A = {1, 2, . . . , k} is the set of agents.
– T = {1, 2, . . . , n} is the set of tasks.
– D =

{
(dmin

t , dmax
t ) | t ∈ T and dmin

t , dmax
t ∈ N

}
is a set of pairs of minimum

and maximum duration for every task. Each task has to be scheduled for at
least the minimum duration and at most the maximum duration.

– S =
{
(se

t , s
�
t) | t ∈ T and se

t , s
�
t ∈ N

}
is a set of pairs of earliest start time

and latest start time for every task. Every task has to be scheduled at or after
the earliest start time and before or at the latest start time.
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– For any t in T , Ct ⊆ A is the set of agents that can perform task t. Let
C = {C1, . . . , Cn}.

– There are m types of renewable resources. The maximum quantities of the
resources are encoded in a vector B in N

m. Bi gives the maximum quantity
of resource i.

– R in N
n×m is a matrix that encodes the resource requirements of the tasks.

Rtj gives the quantity of resource j required by task t.

The planning horizon H of an instance I is defined as max
{
s�

t + dmax
t | t ∈ T

}
.

In the rest of the paper, we use x to denote an arbitrary non-negative integer.
Associated with every ARCPSP instance is a parameter, window length

denoted by Δ, that is intrinsic to the instance. Formally, Δ is the smallest
positive integer such that, for all tasks t, if xΔ < se

t � (x + 1)Δ, then
s�

t + dmax
t � (x + 2)Δ. The definition of Δ implies that, if the entire plan-

ning horizon is partitioned into intervals of size Δ, then the tasks that start in
an interval can only spill over to the next interval but not the interval after. We
refer to the interval (xΔ, (x+1)Δ] as window x. The definition of window length
implies that 0 < Δ � dmax, where dmax = max{(s�

t + dmax
t ) − se

t + 1 | t ∈ T }.
Therefore, given a scheduling instance I, the window length can be determined
in time polynomial in the number n of tasks and dmax. Henceforth, we assume
that Δ is given.

Remark 1. The window length restricts the maximum duration for the tasks
depending on the starting time inside a window. For example, consider a task t
that has a maximum duration of 2Δ and can start in the interval (xΔ, (x+1)Δ].
If it starts at xΔ+1, then its maximum duration is 2Δ. If it starts at xΔ+r+1
(where, r < 2Δ and r ∈ N), then the maximum duration is at most 2Δ − r.
The scheduling of tasks with starting-time-dependent execution times has been
extensively studied [5,6]. More specifically, it is known to be NP-hard [12].

A set T ′ ⊆ T of tasks is permissible if the sum of the quantities of each type of
resource required by the tasks in T ′ is less than or equal to its maximum quantity.
Formally, T ′ is permissible, if for every resource j ∈ [m],

∑
t∈T ′ Rtj � Bj . The

set of all permissible sets is the complement of the set of all forbidden sets
of tasks (a set of tasks that cannot be scheduled together) [20]. In general, the
enumeration of forbidden sets (consequently of permissible sets) for any instance
is computationally expensive [21]. Intuitively, if the earliest starting time of a
task is after another task ends, then the two tasks can never interfere with each
other. By the definition of window length, only tasks with the earliest start
time in the intervals ((x − 1)Δ,xΔ], (xΔ, (x + 1)Δ] or ((x + 1)Δ, (x + 2)Δ] can
interfere with a task with the earliest start time in the interval (xΔ, (x + 1)Δ].
Permissible sets over such tasks are said to be relevant. We denote the set of all
relevant permissible sets by P. Algorithm 1 computes all relevant permissible
sets in time O

(
(kΔ)kH

)
. In the rest of the paper, we assume that P is given.

A schedule is a set of tuples of the form (st, at, dt) for every task t, where st

is the actual start time, at is the agent assigned to the task and dt is the exact
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Algorithm 1. Finding all the relevant permissible sets.
Input an instance I of the ARCPSP.
Output the relevant permissible sets in I.
1: P ← ∅

2: for i := 0 to floor(H/Δ) do
3: X ← {t : se

t ∈ (iΔ, (i + 1)Δ]}
4: for all U ⊂ X s.t. |U | � k do
5: if

∑
k∈U Rkj < Bj for all j ∈ [1, m] then

6: P ← P ∪ {U}
7: end if
8: end for
9: end for

10: return P

duration allocated to the task. A schedule is valid if the following conditions are
satisfied.

(a) At any time, every agent is assigned at most one task.
(b) At any time, the set of tasks scheduled together is permissible.
(c) Tasks that have been scheduled are not preempted.
(d) For every task t in T , se

t � st � s�
t, at in Ct and dmin

t � dt � dmax
t .

One reason for the nonexistence of a valid schedule may be the lack of suffi-
ciently many agents. In any window, k agents can complete at most kΔ tasks.
Therefore, if there is a window (xΔ, (x+1)Δ] such that the number of tasks that
have to be completed in the window is more than kΔ, then no valid schedule
exists. In this case, we say that the number of agents is insufficient. In the rest
of the paper, we assume that the number of agents is sufficient. For clarity, we
restate the assumptions.

(A1) The number k of agents is sufficient.
(A2) The window length Δ is given.
(A3) The set P of all relevant permissible sets is given.

3 Encoding Valid Schedules as Paths in a Graph

With every instance I = (A, T ,D,S, C, B,R), we associate a graph GI =
(VI , EI). Intuitively, each vertex in VI corresponds to a configuration of the
agents at some time in the planning horizon of I. There is an edge (u, v) in
EI if and only if it is possible for the configuration of the agents corresponding
to vertex u to progress to the configuration corresponding to vertex v in the
following time step without violating the constraints of I. If a vertex has more
than one out-edge, it means that the corresponding configuration of the agents
can progress in different ways depending on the scheduling decision.

Every path in the graph GI corresponds to a valid sequence of configurations
of the agents. By designating an initial vertex vinit and a final vertex vf cor-
responding, respectively, to the initial configuration of agents before execution
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and the final configuration of agents after completing all the tasks, a path from
vinit to vf corresponds to a sequence of scheduling decisions constituting a valid
schedule for I.

Every vertex in VI has four components. The first component is a vector
that holds the task assignment for every agent along with the duration left to
complete the task. An idling agent, i.e., an agent which is not assigned any task
from T , is assigned a dummy task 0. The second component is the current time.
The third component has a set of tasks that have to be completed by the end of
the window corresponding to the current time. The fourth component records
the set of tasks completed so far in the window. Formally,

v =
((

(1, t1, �1), . . . , (k, tk, �k)
)
, τ, F, C

)
∈ ([k] × T × [2Δ])k × [H + 1] × 2T × 2T

belongs to VI if the following conditions are satisfied.

1. There exists P ∈ P such that {t1, . . . , tk} ⊆ P ∪ {0}, i.e., the set of tasks
scheduled at any time is permissible.

2. For every currently assigned task ta ∈ {t1, . . . , tk}, a ∈ Cta , i.e., the agent
assigned to the task can perform it.

3. For all pairs t, t′ of tasks in {t1, . . . , tk} \ {0}, at �= at′ , i.e., the same agent
cannot be assigned multiple tasks (not idling).

4. For every agent a in A, 0 � �a � dmax
ta , i.e., the duration left for the task

allocated to agent a is shorter than or equal to the maximum duration.
5. 0 � τ � H + 1.
6. F ⊆ T and if xΔ < τ � (x + 1)Δ, then, for every task t in F , xΔ <

s�
t + dmax

t � (x + 1)Δ.
7. C ⊆ T and if xΔ < τ � (x + 1)Δ, then, for every task t in C, (x − 1)Δ <

se
t + dmin

t � s�
t + dmax

t � (x + 1)Δ.
8. For every task t in {t1, . . . , tk}, if t �= 0, then t ∈ F and t �∈ C.

Let v =
((

(1, t1, �1), . . . , (k, tk, �k)
)
, τ, F, C

)
and v′ =

((
(1, t′1, �

′
1), . . . ,

(k, t′k, �′
k)

)
, τ ′, F ′, C ′) be two vertices in GI . The vertex v is said to

be in the window x if τ ∈ (xΔ, (x + 1)Δ]. The initial vertex
vinit is

((
(1, 0, 1), (2, 0, 1), . . . , (k, 0, 1)

)
, 0, ∅, ∅

)
and the final vertex vf is((

(1, 0, 1), (2, 0, 1), . . . , (k, 0, 1)
)
,H + 1, ∅, ∅

)
.

There are three types of edges in GI .

(E1) The edges between two vertices in the same window.
(E2) The edges from vertices in a window to vertices in the next window.
(E3) The edges to the final vertex.

We formally define the three types of edges in the graph GI in Table 2. The
edges of type (E1) and (E1) correspond to the assignment of new tasks; some
of the agents may be assigned new tasks, while others continue their previously
assigned task. The edges of type (E1) are from vertices corresponding to the
completion of all the tasks to the final vertex vf .

The following lemma provides a necessary and sufficient condition for the
existence of a valid schedule.
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Table 2. The three types of edges in GI .

Lemma 1. There is a valid schedule for the instance I if and only if there is a
path from vinit to vf in GI .

Proof. (⇒) In any path ρ from vinit to vf , task t has been assigned to an
agent a if there is a vertex of the form

(
(. . . , (a, t, dmax

t ), . . . ), τ, F, C
)
. If xΔ �

s�
t + dmax

t � (x + 1)Δ and the task is not completed by either time xΔ or
x + 1Δ, then there will be no out-edge from the vertex with time τ + 1 in the
path. Additionally, by the definition of edge types (E1) and (E2), when task t
is completed, it is removed from F , hence it cannot be reassigned. Furthermore,
no task can be assigned simultaneously to multiple agents. The start time for
task t is st = min

{
τ |

(
(. . . , (a, t, dmax

t ), . . . ), τ, F, C
)

∈ ρ
}

and the end time is
et = max

{
τ |

(
(. . . , (a, t, dmax

t , . . . ), τ, F, C
)

∈ ρ
}
. The duration is the difference

between the end time and the start time, i.e., dt = et − st.
(⇐) Every valid schedule induces a path from vinit to vf . �	
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Given an ARCPSP instance I, we compute a valid schedule by constructing
the corresponding graph GI and searching for a path from vinit to vf in GI .
Given a path from vinit to vf , Algorithm 2 presents the procedure to extract a
valid schedule corresponding to a path from vinit to vf .

Lemma 2. A valid path can be computed in time O
(
H

(
(2kΔ2)k · 24kΔ

)2)
.

Proof. The number of vertices in the graph GI is O
(
(2kΔ2)k ·H·24kΔ

)
. The first

component of any vertex in VI has a task assignment for each agent and the dura-
tion left for the task. Since the number of agents is sufficient (Assumption (A1)),
any agent may start at most 2kΔ tasks over the course of the schedule. More-
over, the duration left for the task is at most 2Δ. The size of the first component
is O(2kΔ2)k). The size of the second component is H. The third component F
encodes the set of tasks to be completed by the end of the current window. If
the number of agents are sufficient, then the maximum number of tasks that can
finish in the window is 2kΔ. In the worst case, the size of F (third component)
is 22kΔ. The size of the third component is the same as the size of the fourth
component. The number of edges in GI is O

(
H

(
(2kΔ2)k ·24kΔ

)2). In any graph,
a path between any two vertices can be computed in O(|V | + |E|). �	

Algorithm 2. Schedule corresponding to a path from vinit to vf in GI .
Input path ρ = (vinit, v1, ..., vk, vf ) in GI .
Output valid schedule S.
1: S ← {0, ..., 0} {empty schedule of length n}
2: for

(
((1, i, �i), . . . , (k, j, �j)) , τ, F, C

)
∈ ρ do

3: for (a, t, �) ∈ ((1, i, �i), . . . , (k, j, �j)) do
4: if t �= 0 then
5: d ← dmax

t − � {duration that t has run for so far}
6: s ← τ − d {time that t was started}
7: St ← (s, a, d)
8: end if
9: end for

10: end for
11: return S

Remark 2. The complexity of finding a valid schedule depends on the number of
tasks that have to be completed in each window. If we fix H and Δ and increase
n, then the number of tasks per window increases. The worst-case complexity
for particular values of H, k and Δ occurs when we have to schedule close to
kΔ tasks in every window.
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4 Reachability Games for Optimal Scheduling

In this section, we define optimal schedules and provide a technique to compute
optimal schedules by building upon the graph construction presented in Sect. 3.

Let S be a schedule for an instance I = (A, T ,D,S, C, B,R). For every
agent a, let wa ∈ Z be the weight of the agent. The value of the agent in the
schedule S denoted by valueS(a) is defined as

valueS(a) =
∑

(st,a,dt)∈S

dt,

i.e., the value of the agent a in the schedule S is defined as the sum of the
duration of the tasks assigned to the agent a in schedule S. The value of the
schedule S denoted by val(S) is defined as

val(S) =
∑

a∈A
wa · valueS(a).

A schedule S for instance I is optimal if for every other schedule S′,
val(S′) � val(S). Let τ ∈ [0,H + 1], where H is the planning horizon of I,
then the value of a schedule up to a time τ denoted by val(τ ;S) is defined as

val(τ ;S) =
∑

a∈A
wa

∑

(st,a,dt):st�τ

min{dt, τ − st + 1}.

Since the value of a schedule is a linear function on the value of each agent in
the schedule, we observe that

val(τ + 1;S) = val(τ ;S) +
∑

a∈A:
a is not idle at τ+1

wa. (1)

We incentivize the assignment of tasks to a particular agent by giving it a
greater weight compared to the weights of the other agents.

4.1 Two-Player Reachability Games

For each problem instance, we construct a two-player reachability game such
that we can obtain an optimal schedule from any memoryless winning strategy
for one of the players, which we call the reachability player.

A two-player reachability game [16] is played on a graph G = (V,E) between a
reachability player and a safety player. Initially, a token is placed on a designated
initial vertex vη in V . The two players take turns moving the token along the
edges of the graph. The objective of the reachability player is to move the token
to a vertex in F ⊆ V . The safety player tries to prevent the token from reaching
a vertex in F . A play ρ is a (possibly infinite) sequence vηv1... of vertices such
that (vi, vi+1) ∈ E for all 0 � i. The play ρ is winning for the reachability player
if, for some vi in ρ, vi ∈ F . A memoryless strategy σ : V → V maps every
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vertex to one of its successors. The play ρ is said to agree with the strategy σ for
player P if vi+1 = σ(vi) whenever player P has to play from vi. A memoryless
strategy is said to be winning for player P if all plays that agree with it are
winning for player P . Such games are determined, i.e., one of the players has a
memoryless winning strategy [16]. Additionally, a memoryless winning strategy
for the winning player can be found in O(|V | + |E|) [4,18]. An extensive survey
of reachability games on graphs can be found in [2,9].

Two-player reachability games on graphs have been used for online scheduling
of sporadic tasks [7,8]. In online scheduling, the reachability player tries to create
tasks that will miss the deadline and the safety player is the scheduler who tries
to ensure that none of the tasks miss their deadlines.

4.2 Optimal Scheduling

In the setting of this paper, the reachability player tries to find an optimal
schedule, whereas the safety player tries to produce an alternate schedule with
a value greater than the one produced by the reachability player.

With every instance I = (A, T ,D,S, C, B,R), we associate a graph Glinear
I =

(V,E). The vertices of the graph have four components. We use the first and
second components to record the schedules for the reachability player and the
safety player, respectively. The third component, which we call the counter, holds
the difference between the values of the two schedules. The difference between
the values of any two valid schedules is at most cH and at least −cH, where
c = k · max{|wa| | a ∈ A}. The last component records the turn, i.e., the player
that has to move the token next. Let GI = (VI , EI) be the graph corresponding
to instance I as defined in Sect. 3.

The set of vertices of the graph Glinear
I is V = VI × VI × [−cH, cH]× {r, s}.

The initial vertex vη is the tuple (vinit, vinit, 0, r) and the set of winning vertices
for the reachability player is F =

{
(vf , vf , δ, α) | δ � 0, α = s ∨ α = r

}
. There

are three types of edges in Glinear
I .

(E4) The edges starting from vertices with turn r.
(E5) The edges starting from vertices with turn s.
(E6) The direct edges to (vf , vf , 0, r).

Table 3. The three types of edge in Glinear
I .
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The edges of type (E4) and (E5) record the scheduling choices of the reachability
player and the safety player, respectively. The edges of type (E6) ensure that
the reachability player wins the game when the safety player has no action to
extend its schedule. Let χ = (u, v, δ, α) and χ′ = (u′, v′, δ′, α′) be two vertices in
V . We formally define the three types of edges in Table 3.

By Lemma 1, every valid schedule for I induces a valid path from vinit to
vf in the graph GI . Since the first component of the vertex set V is VI , every
valid schedule induces a valid path on this component. Thus, reachabilty player
can use any valid schedule as a memoryless strategy. Moreover, any play ρ that
agrees with such a strategy, induces a path from vι to a vertex of the form
(vf , v, δ, s), where v ∈ VI and δ ∈ [−cH, cH].

In the reachability game on the graph Glinear
I , the two players take turns

to assign tasks to agents for each time step in the scheduling horizon such that
the constructed schedules are valid. If the reachability and safety players follow
schedules S1 and S2 respectively, then Eq. (1) implies that

val(τ + 1;S1) − val(τ + 1;S2) = (val(τ ;S1) − val(τ ;S2))

+
∑

a is not idle at τ
in S1

wa −
∑

a is not idle at τ
in S2

wa. (2)

For finding the optimal schedule, we require that the value of the schedule
chosen by the reachability player is greater than or equal to the value of the
schedule chosen by the safety player, i.e., the difference between these values is
non-negative. We maintain and update this difference according to Eq. (2), by
recording the difference in the counter. If the difference in the value of the two
chosen schedules is non-negative at the end of the scheduling horizon, then the
reachability player reaches a vertex in F .

Lemma 3. If the reachability player follows an optimal schedule, then it wins
the game.

Proof. In the reachability game on Glinear
I , the two players take turns in con-

structing their respective schedules. We maintain the difference between the
values of the two schedules constructed so far in the counter. This difference
is always contained in the closed interval [−cH, cH]. If the safety player fol-
lows a valid schedule and the reachability player follows an optimal schedule,
by construction of Glinear

I , the difference is non-negative and a vertex in F is
reached. However, if the safety player does not follow a valid schedule, then the
reachability player wins by using an edge of type (E6). �	

Corollary 1. If the reachability player does not follow an optimal schedule and
the safety player follows one, then the safety player wins the game.

Theorem 1. A memoryless winning strategy for the reachability player can be
computed in time O

(
H3

(
(2kΔ2)k · 24kΔ

)2).
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Proof. The number of vertices in Glinear
I is O

(
|VI |2 · 2kH

)
. Suppose it is the

turn of the reachability player, upon fixing the first component of the vertex,
the other three components are directly determined. Therefore, the number of
edges in Gmax

I is |EI |2. �	

4.3 Extracting the Optimal Schedule

We present a technique to extract the optimal schedule corresponding to any
memoryless winning strategy σ for the reachability player. Consider the sce-
nario where the safety player uses the same memoryless winning strategy σ.
Let ρ denote the play corresponding to this scenario. Algorithm 3 presents the
procedure to construct this play ρ and extract the optimal schedule.

Algorithm 3. Extracting the optimal schedule.
Input memoryless winning strategy σ.
Output optimal schedule S.
1: v ← (vinit, vinit, 0, r)
2: ρ ← ∅

3: while v �= (vf , ∗, 0, s) do
4: if fourth component of v = r then
5: ρ ← ρ ∪ {v}
6: end if
7: v ← σ(v)
8: end while
9: apply Algorithm 2 to ρ to retrieve S

10: return S

4.4 Minimizing Total Load and Makespan

The completion time of an agent is the time when the agent finishes all of its
assigned tasks. Total load is defined as the sum of the completion times of all
the agents [5]. To minimize the total load, we modify the counter in construction
from Sect. 4; it now has k components, one for each agent. In the counter cor-
responding to agent a, we maintain the difference between the latest time when
agent a is not idle across the two schedules (corresponding to the moves of the
reachability player and the safety player). Since the smallest value of completion
time is zero and the greatest value of completion time is H, this difference is
contained in the closed interval [−H,H]. Thus, the counter takes values from
this interval.

Makespan is the total length of the schedule, i.e., the maximum value among
the completion times of the agents. Makespan minimization is another common
optimization criterion in the literature [1]. For minimizing the makespan, we
modify the counter in the construction from Sect. 4. The counter takes values
from the interval [−1,H]. In the counter, we maintain the difference between the
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latest time when all the agents are idle across the two schedules (corresponding
to the moves of the reachability player and the safety player). In Table 4, we
present the counters for each type of optimization criteria.

Table 4. The number of components in the counter and the range of each component
corresponding to the optimization criterion.

Optimization type #components Range of each component

Minimize makespan 1 [−1, H]

Linear function 1 [−cH, cH]

Minimize total load k [−H, H]

5 Experimental Evaluation

In this section, we validate the reachability game approach for finding optimal
schedules using 1) a case study for scheduling tasks for astronauts aboard the
International Space Station and 2) randomized experiments for different opti-
mization criteria.

5.1 Qualitative Evaluation

We solve a scheduling problem for six astronauts aboard the International Space
Station (ISS). The astronauts have to perform a set T of lab tasks with variable
durations. Due to power requirements, the astronauts can perform only three lab
tasks at any time. Additionally, to stay healthy, the astronauts have to a) eat,
b) use a treadmill and c) lift weights. An astronaut cannot exercise after she
eats. Additionally, we also model a scenario where some of the astronauts are
unhealthy (they may be injured or ill). We penalize schedules that use unhealthy
astronauts. Thus, we assign an unhealthy astronaut a weight of −1 and assign
all others a weight of 1.

Table 5. Time(s) for computing a valid schedule and an optimal schedule.

Number (n) of tasks Valid Optimal

10 0.07 0.179

20 0.08 0.191

30 0.18 0.592

40 0.20 0.608

50 3.56 4.450

60 3.62 4.515
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Let Ah denote the set of healthy astronauts. We compute schedules that are
optimal with respect to the linear function

∑
a∈Ah

valueS(a)−
∑

a�∈Ah
valueS(a).

For the experiments, we fix the window length Δ as 20 and the planning hori-
zon H as 300. The time in seconds for computing both a valid schedule and an
optimal schedule versus the number n of lab tasks is presented in Table 5.

Since only three lab tasks can be performed at any time, the worst-case
complexity for finding an optimal schedule is reached when around 3Δ tasks
(n = 50) have to be scheduled.

5.2 Randomized Evaluation and Comparison with an Integer
Programming Formulation

For each optimization criterion, we generate random problem instances and
record the time for synthesizing an optimal schedule for these instances. We
fix the number of agents as five and assume that all the agents can perform all
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(c) Optimizing over a linear objective
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Fig. 1. (a)–(c) provide average running time for computing an optimal schedule for the
corresponding optimization criterion. (d) provides average running time for computing
a valid schedule as a function of window length.
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the tasks. We fix the planning horizon H = 200. We vary the window length Δ
and the number n of tasks and observe its impact on the running time.

For each value of Δ and n, we generate 100 random instances and record the
running time as the average over the running times of these 100 instances. In
total, we run 10800 experiments to generate the graphs presented in Fig. 1. We
performed the experiments on an Ubuntu 18.04 system with an Intel i7-8550U
(1.80 GHz) processor and 16 GB memory.

The experiments show that we can compute optimal schedules in less than
a minute for up to 100 tasks when Δ = 30. After we fix the values of Δ and
H, if the number n of tasks is small compared to H, the tasks are distributed
sparsely across the windows. In this case, the H term dominates the complexity
of finding an optimal schedule. However, as we increase n (until its upper bound
O(kH)), the density of tasks in each window increases. As a result, the 24kΔ

term dominates the complexity of finding an optimal schedule. This observation
is consistent with Remark 2.

Finally, we compare the reachability game technique against an integer pro-
gramming encoding for the ARCPSP problem. We use Gurobi [10], a state-of-
the-art mixed-integer linear programming (MILP) solver for solving the integer
programming formulation. Figure 2 contains the results of this comparison. The
experiments show that the reachability game technique is at least two orders of
magnitude faster than the integer program that we run on Gurobi.

(a) Valid schedule
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Fig. 2. Average running times for computing (a) a valid schedule and (b) an optimal
schedule with respect to a linear optimization criterion using the reachability game for-
mulation versus an IP encoding run in Gurobi. The solid lines correspond to run-times
obtained by using the reachability game technique and the dashed lines correspond to
the Gurobi implementation.



166 D. Raju et al.

6 Conclusion

We identified a new parameter called window length for the agent resource-
constrained project scheduling problem (ARCPSP). Using this parameter, we
provide a novel algorithm for finding optimal schedules that scales polynomially
in the number of tasks as long as the window length is a fixed constant. We
illustrate the applicability of this method by solving a scheduling problem for
astronauts aboard the International Space Station (ISS). Furthermore, a direct
comparison with an integer program formulation that we run in Gurobi shows
that this technique is at least two orders of magnitude faster.
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