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Abstract

Adversarial optimization algorithms that explicitly search for flaws in agents’
policies have been successfully applied to finding robust and diverse policies in
multi-agent settings. However, the success of adversarial optimization has been
largely limited to zero-sum settings because its naive application in cooperative
settings leads to a critical failure mode: agents are irrationally incentivized to self-
sabotage, blocking the completion of tasks and halting further learning. To address
this, we introduce Rationality-preserving Policy Optimization (RPO), a formalism
for adversarial optimization that avoids self-sabotage by ensuring agents remain
rational—that is, their policies are optimal with respect to some possible partner
policy. To solve RPO, we develop Rational Policy Gradient (RPG), which trains
agents to maximize their own reward in a modified version of the original game in
which we use opponent shaping techniques to optimize the adversarial objective.
RPG enables us to extend a variety of existing adversarial optimization algorithms
that, no longer subject to the limitations of self-sabotage, can find adversarial
examples, improve robustness and adaptability, and learn diverse policies. We
empirically validate that our approach achieves strong performance in several
popular cooperative and general-sum environments.

1 Introduction

A longstanding challenge in the field of multi-agent reinforcement learning (MARL) is that of learning
robust behavior: individual agents should be able to adapt to a variety of different strategies that other
agents might exhibit. One way to achieve robustness is by training agents to iteratively find and fix
flaws in their policy. In zero-sum settings, this can be naturally achieved through self-play [Samuel,
1959, [Silver et al., [2016]], where agents train against copies of themselves. Due to the adversarial
nature of zero-sum self-play, agents will continually be encouraged to find new ways of attacking
their opponents which will naturally lead to iterative improvement and robustification. In general-sum
(especially cooperative) settings, however, self-play will explicitly avoid the weaknesses of other
players, as it is harmful to the shared reward, resulting in brittle agents [[Carroll et al.l 2019]].

Inspired by its success in zero-sum settings, we leverage a form of adversarial optimization (i.e., we
incentivize minimizing other players’ rewards) to train agents to find and fix flaws in general-sum
settings. However, seeking to minimize others’ rewards in cooperative settings, where all agents aim
to maximize a shared reward, unsurprisingly leads to self-sabotaging behavior [Cui et al.| 2023]]. If
an agent is solely incentivized to minimize the rewards of another player, the adversary can simply
learn to refuse to collaborate with that teammate. Even worse, the adversary has an incentive to act
irrationally by actively sabotaging its teammate’s (and by extension, its own) reward, preventing
meaningful learning.

In order to reap the benefits of adversarial optimization without incurring self-sabotaging behavior,
we establish a new paradigm for adversarial optimization called Rationality-preserving Policy Opti-
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Figure 1: Rational policy gradient (RPG) allows finding rational adversarial examples, robustifying
behavior, and discovering diverse policies.

mization (RPO). We formalize RPO as an adversarial optimization problem that requires the policy to
be optimal with respect to at least one policy that other agent(s) might play. This can be thought of
as enforcing the agent to be rational: i.e., the agent must be utility-maximizing for some choice of
teammates.

The rationality constraint imposed by RPO is difficult to directly integrate into a single optimization
objective. To solve RPO, we introduce a novel approach called rational policy gradient (RPG), which
provides a gradient-based method for ensuring rational learning while optimizing an adversarial
objective. RPG introduces a new set of agents called manipulators, one for each of the agents in the
original optimization problem (which we call base agents). In RPG, the base agents only train to
maximize their own reward in a copy of the game (called its manipulator environment) with their
teammates replaced by their manipulator counterparts — this ensures that the base agents are solely
learning to be rational. Each manipulator uses opponent-shaping [Foerster et al.,2017] to manipulate
the base agents’ learning and guide them towards policies that optimize the adversarial objective
(e.g., achieving low reward with one another in the original base environment). The manipulators
are discarded after training and the trained base agents give the solution to the RPO-version of the
adversarial objective — whether that be related to robustness, diversity, or some other objective.

As summarized in Figure[T] we use RPG to extend several existing adversarial optimization algorithms
to find adversarial examples in pretrained policies, train more robust strategies, and fully eliminate
self-sabotaging behavior exhibited by existing adversarial diversity algorithms [2023]
Sarkar et al.,[2024]] — an open problem in existing literature. We summarize our contribution:
* We introduce a formalism called RPO that overcomes the issue of self-sabotage in any
adversarial optimization algorithm.
* We introduce a gradient-based deep learning algorithm called RPG that solves RPO.
* We use RPG to construct five novel adversarial optimization algorithms that find rational
adversarial examples, train robust agents, and learn diverse policies.
* We empirically demonstrate that our algorithms avoid self-sabotage and outperform existing
baselines in popular cooperative environments.

2 Preliminaries

We consider the setting in which agents play in a general-sum partially-observable stochastic game
(M,S, A, R,~, P,Q,O) defined as follows. M = {1,...,k} is a set of agents. S is a set of
states with initial distribution Sg. A = A; X --- X A,, is the space of joint actions; for ease
of notation, we assume without loss of generality that the action set is identical across agents.
R;: S x A xS — Ris agent i’s reward function. + is the discount factor. P : § x A x S — [0, 1]
is the transition function where ), s P(s,a,5") = 1. Q@ = Qy x --- x Q,, is the joint observation
space. O : § x A x Q — [0, 1] is the observation function.



For sake of exposition, we limit ourselves to games with two players. A Markovian policy for an
agent ¢ specifies a distribution over actions .A; for every observation in §2;. Let II denote the joint
Markovian policy space for all agents, 1I; denote the policy space of agent ¢, and II_; denote the
co-policy space, the joint policy space of the co-players (all agents other than 7). We note that our
methods will work for history-dependent policies too (e.g., by having the policies maintain external
memory). We use U;(7;, m—;) to denote the expected (over stochasticity from the environment and
policy) sum of discounted rewards E [ Zt v R; (s, at, 5t+1)] for agent ¢ from the initial distribution
over states. The best-response function for agent i is the set-valued function BR; : IT_; — P(II;)
such that BR;(7_;) = argmax, U;(m;, m_;), denoting the set of policies agent i could play to
maximize the sum of discounted returns in response to 7_;.

3 Rationality-Preserving Policy Optimization

3.1 Adversarial Optimization Causes Self-Sabotage

We call an optimization objective adversarial when some of the agents are explicitly incentivized
to minimize the reward of another agent. For example, the adversarial training (AT) optimization
problem [Gleave et al.,[2019] is defined for a victim Ty;im and an adversary magyersary in a 2-player
game. The objective for the adversary is ming,,...., Uyictim ( Tyictim Tadversary) While the objective for
the victim is non-adversarial: maxq, ... Uvictim (Tvictim, Tadversary ). Il Zero-sum settings, AT has been
used to train the adversary to find adversarial examples that expose robustness flaws in the victim’s

policy and have the victim learn to fix them.
. . . . Adversary
In an attempt to train an agent that is robust in a cooperative C D E

setting, consider applying AT to the game between two players

defined by the matrix in Figure 2] Suppose the victim is the Victim 1 0 | —1

row player and the adversary is the column player. Under the 0] 1 ]-1

objectives specified by AT, no matter which policy 7yicim plays,

the adversary will self-sabotage the game by playing policy
AT = F since this automatically minimizes the Victim’s reward at a value of -1. Notice how

adversary
Al will not help 7yiim improve its robustness: no policy available to the victim can do well if
the adversary plays action F.

Figure 2: A cooperative game.
adversary

3.2 The Rationality-Preserving Policy Optimization Formalism

Rationality-preserving policy optimization (RPO) fixes the issue of sabotage in adversarial optimiza-
tion problems by requiring an adversarial agent’s policy to be rational, i.e., a best-response to at least
one possible co-policy.

Definition 3.1 (Rationality-preserving Policy Optimization (RPO)). For each agent ¢, let
O;(m1,...,mm) denote its adversarial optimization objective. The RPO-version of agent i’s ob-

jective is given by max O;(m1,...,mm) subjectto In’; s.t. m; € BR(n',). (1)

Let us walk through an example of applying RPO to the adversarial training (AT) objective
ming, o Ovictim (Tvictim, Tadversary ). RPO will modify AT by requiring that ygyersary 18 rational since
it is a best response to some co-policy. Notice that the RPO constraint has no affect on myicim since it
is already optimizing to be rational.

Now, if myictim = A, the constraint from Definition will lead the adversary to find the policy
wifvgmaw = D since D is a valid best response if the victim plays B. Note that while playing E
minimizes the adversarial objective further than playing D, it does not satisfy the constraint of being
a rational action. Importantly, the adversary is teaching the victim something actionable: increasing
their likelihood of playing B would improve their reward. Moreover, the only equilibrium of this
new optimization problem is for the victim to play a uniform mixture over actions A and B. This
makes the victim robust because the minimum expected reward it will obtain against any rational

co-policy is 0.5.
Notice that the AT-RPG is a strict generalization of AT since they are identical in zero-sum
games. In the zero-sum setting, letting 7’ = myicqm trivially satisfies the rationality constraint

simce BR(inctim) = MaAX7,jersary Uadversary (inctimy 71—adversary) = M, gyerary Uviclim('ﬂvictima 7"—aclversary) m
Zero-sum games.



Algorithm 1 RPG update
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Figure 3: The RPG update. The inner box visualizes a base agent’s update and the full figure
visualizes the corresponding manipulator update taking gradients through the base agent’s update.

4 Rational Policy Gradient

Rational policy gradient (RPG) incorporates the constraint from Definition [3.I] by introducing a new
manipulator agent policy . for each base agent policy ;. Each base agent i now ignores its original
objective O;(m1, ..., T, ) and instead optimizes to play a best response against its manipulator to
enforce the rationality constraint from Equation (T). The manipulator is responsible for the original
objectives O;, giving the following two objectives

Base agents: max U (7, 7*), Manipulators: max Oi(T1, ...y Tm). )

T T

Notice that the manipulators can only influence the original objective indirectly by choosing which
policy the base agents should best respond to. Since the rationality constraint has no affect on agents
with non-adversarial objectives (e.g., the victim in AT), as an optimization, such base agents keep

their original optimization objective: max,, O; (71, ..., Tp).

The full RPG-modified objectives of several adversarial optimization problems modified are given in
Appendix D] In the rest of this section, we give an overview of the principles behind the gradient
update for RPG. Further details are available in Appendix

4.1 RPG Gradients

RPG approximates the objectives in Equation through a policy gradient update. Let 6; and
6™ denote the parameters for policies 7; and 7. The gradient update for the base policies is
straightforward,

i

0, < 0; + Vo, U(6;,0™). 3)
Building atop existing opponent shaping techniques [Foerster et al,[2017], the manipulator takes
higher-order gradients through their base agents’s update with respect to the adversarial objective

2

Notice that O; is evaluated at the base agents’ parameters 6, after they have taken one gradient step
into the future. The manipulators are responsible for the adversarial objective but can only indirectly
affect it by altering the base agent’s learning process.

In order to compute gradients in a model-free deep learning setting, we need to use a surrogate loss

that preserve higher-order gradients. We use Loaded DiCE [Farquhar et al.,[2019], which is based on
DiCE [Foerster et al.| 2018]| to define such a surrogate loss. See Appendix [E.I|for more details.

4.2 Partner-play Regularization

In deep learning settings, significant distribution shifts between training and evaluation data can lead
to poor performance. In our case, base agents are training against manipulators and then evaluated
against other base agents: this shift in partner can easily put the base agent’s policy out-of-distribution.
To minimize the impact of this distribution shift, we introduce a regularization term in the base
agent’s loss function called partmer-play regularization: for each base agent ¢, we add to the training
data some rollouts of ¢ partnered with each other base agent that ¢ is evaluated against under O;. This
prevents ¢’s policy from being out-of-distribution during evaluation and ensures that manipulators
cannot optimize adversarial objectives by simply putting the base agents training out-of-distribution.



4.3 The Rational Policy Gradient Algorithm

Algorithm [T shows psuedocode for a single policy update of RPO. Lines 2-5 perform /N lookahead
steps on the base agent policies by taking gradient steps towards being a best-response to their
corresponding manipulator policies (as well as partner-play regularization). Line 6 performs rollouts
between all of the updated base agents required to evaluate the original objectives O; (rollouts between
all base agents are shown for simplicity). Line 7 then applies a gradient step on the manipulator
policies through the DiCE-modified [Foerster et al.,|2018] loss function E% evaluated on the rollouts

from updated base agents. Line 8 simply applies a single gradient step on the base agents (identical
to the update on line 4) with respect to a traditional RL surrogate loss. We note that RPG is agnostic
to the underlying RL algorithm used to compute the gradients of the loss function.

4.4 RPG Algorithms

In this section, we give an overview of the novel algorithms that we introduce using RPG, allowing
them to be applied to non-zero-sum games. A more detailed specification along with a visualization
of each algorithm is given in Appendix [D]

AP-RPG is used to find flaws in agents. AP-RPG is the RPG variant of adversarial policy (AP)
[Gleave et al.,2019]]. AP is used in zero-sum settings to find adversarial vulnerabilities in existing
agents. In both AP and AP-RPG, we refer to this agent as the victim. Meanwhile, the learning agent
that attempts to find a vulnerability in the victim is called the adversary. In the case of AP-RPG, since
we want to prevent the adversary from acting irrationally, it trains against an adversary manipulator.

AT-RPG is used to robustify a learning agent. AT-RPG is the RPG variant of adversarial training (AT)
[Gleave et al.L|2019]|. AT is an extension of adversarial policy that allows the victim to simultaneously
learn while the adversary attacks. AT-RPG modifies AP-RPG in the same way by allowing the
victim to learn and since the victim is not subject to any adversarial incentives it does not require a
manipulator.

PAIRED-RPG is used to robustify a learning agent using regret. PAIRED-RPG is the RPG variant
of protagonist-antagonist induced regret minimization (PAIRED) [Dennis et al., [2020]. PAIRED
is an algorithm used for unsupervised environment design and if it is naively applied to coplayer
design, the adversary can simply learn to sabotage the game when matched with the protagonist.
PAIRED-RPG fixes this issue by introducing a manipulator for the adversary.

PAIRED-Attack-RPG is used to find flaws that maximize an agent’s regret. PAIRED-A-RPG is a
variant of PAIRED-RPG in which the protagonist is fixed, allowing us to find adversarial policies that
the protagonist performs well with, but the victim does not.

AD-RPG is dual purpose: (1) finding a set of truly diverse (i.e., incompatible) policies, and (2)
generating an auto-curriculum to train robust policies. AD-RPG is the RPG variant of the adversarial
diversity (AD) algorithm [Cui et al., 2023} (Charakorn et al., 2023|]. AD works by framing diversity
as the problem of finding a set of strategies that perform well in self-play but poorly in cross-
play, indicating that distinct solutions have been found. However, naively training a population
this way leads agents to achieve low cross-play scores by sabotaging the game rather than finding
fundamentally incompatible strategies. AD is typically implemented by sequentially training agents,
however, we find that simultaneously training all agents with AD-RPG serves the dual purpose of
producing an auto-curriculum that identifies and fixes robustness issues in the population’s strategies
throughout training.

S Experiments

Following a description of our experiment setup, results are organized into three subsections according
to the following empirical claims, with the last one explored throughout:

Claim 1 RPG allows the learning of meaningfully diverse policies.

Claim 2 RPG algorithms train more robust policies.

Claim 3 RPG algorithms find non-trivial adversarial examples in pretrained policies.
Claim 4 RPG prevents self-sabotage across a range of adversarial algorithms.



Base 0 vs. Base 0

Algorithm ~ Self-play  Cross-play

—— Base 1 vs. Base 1

el

§ 1 Base 0 vs. Man?pulator 0 CoMeDi 220 2

& Efxse i vs zanliulalor 1 AD 240 1.25
AD-RPG 240 240

Base 0 vs. Base 1

0 0 IO(I)OO 20(I)00 SO(I)OO 40(I)00 50000
Episode

Figure 4: Left: training curves for each learning agent in AD-RPG. Self-play rewards increase while
cross-play scores decrease (but notably never reach zero). Manipulator’s only reach the level of
reward necessary to influence the base agents to be diverse. Shaded region shows 95% confidence
interval. Right: self-play and cross-play rewards for adversarial diversity-based algorithms in the
cramped room Overcooked layout. Self-sabotage leads to deceptively low cross-play rewards for
CoMeDi and AD while AD-RPG maintains high score even in cross-play.

5.1 Experiment Setup

We evaluate our approach in four primary environments: matrix games with varying general-sum
payoffs; several standard Overcooked [Carroll et al., 2019] layouts, a modified version of STORM
[Khan et al., 2023 that requires agents to collect either green or red coins, rewarding them when
they collect the same color; and two simplified versions of Hanabi [Bard et al.,|2020] that contains
3 colors and ranks and a version that contains 4 colors and ranks (instead of the standard 5). See
Appendix [F| for descriptions and visualization of each of these environments. We use the JaxMARL
[Rutherford et al., [2023]] implementation for the latter three environments. Appendix [E] outlines
algorithm implementation and hyperparameter details used in our experiments.

To evaluate the efficacy of RPG, we compare it against a number of baselines. We first include
(1) self-play (SP) [Samuel, |1959]], where policies are learned by training with themselves. We
then compare against a selection of methods from previous works that attempt to use adversarial
optimization in multi-agent training. Specifically, we compare against (2) adversarial policy [Gleave
et al.,[2019], (3) adversarial training [Gleave et al., 2019]], (4) PAIRED [Dennis et al.,|2020], (5)
adversarial diversity [Cui et al.||2023] |(Charakorn et al.l|2023]], and the previous SOTA extension for
preventing self-sabotage in adversarial diversity, called (6) CoMeDi [Sarkar et al.,2024]]. Our work
extends algorithms (2) - (5) with RPG, as discussed in Section[@

5.2 RPG Finds Meaningfully Diverse Policies

In this section we demonstrate how RPG allows the learning of truly diverse (i.e, incompatible)
policies by solving sabotage in adversarial diversity-based algorithms, whereas existing approaches
[Cui et al.l 2023} [Sarkar et al., [2024] fail.

STORM. Figuref](left) shows the training curves for AD-RPG in the original STORM environment.
Around episode 10000, the manipulators learn to lead each base agent to gather a different colored
coin, causing cross-play reward (e.g., base 0 vs. base 1) to drop. The manipulator’s rollout rewards
eventually plateau since further shaping would do nothing to increase the objective of diversity
between base agents. Even in cross-play, agents avoid self-sabotage and continue to receive a
positive reward, supporting Qualitatively, in cross-play, the agents first each gather
an opposite colored coin and then once they realize their incompatibility, they adapt their initial
strategy, gathering a matching coin in order to receive a partial reward. See supplementary video
overcooked-AD-RPG-adapt for a demonstration. This highlights that AD-RPG only drives down
value in cross-play if it is necessary to improve self-play.

We also test CoMeDi [Sarkar et al., [2024]] in the STORM environment and it fails to exhibit any
attempt to deviate, quickly driving cross-play reward all the way to zero, even though AD-RPG shows
that this is not necessary for high self-play reward. In order to exemplify this behavior, we modify
the original STORM environment so that both agents receive a reward of —0.1 on every timestep
either agent occupies the top-left square in the grid, giving agents an easy way to sabotage the game if
desired. Figure[I8|shows the training curves for CoMeDi run in this modified version of the STORM
environment. The policy quickly learns to intentionally sabotage and receive a large negative reward
in cross-play. Meanwhile, AD-RPG learns to avoid the sabotage state in both self-play and cross-play
in this modified environment.



Overcooked. Figure[d](right) shows the self-play and cross-play rewards computed by different
algorithms in the cramped room Overcooked layout. CoMeDi achieves low cross-play rewards
(along with AD), seemingly a sign of finding incompatible strategies. However, closer inspection
reveals that in cross-play, CoMeDi and AD agents will simply stand in front of the plate dispenser
to prevent their partner from finishing any dishes — a clear sign of sabotage. Supplementary video
overcooked-comedi-sabotage visualizes this behavior. Moreover, high cross-play rewards with
AD-RPG demonstrate that it is able to avoid sabotage and that the cramped room layout
contains very little genuine diversity: agents will only achieve low cross-play reward if they are
incentivized to sabotage. This is unsurprising in light of |Lauffer et al.[[2023]], which showed that
policies in Overcooked require trivial levels of coordination to be successful.

53 RPG Trains Robust Policies

In this section, we show that AD-RPG can learn policies that can generalize across partners. To do
so, we train five policies with different seeds for AD, AD-RPG, SP (with entropy coefficient 0.01),
and SP (with entropy coefficient 0.05). We found that using a large entropy coefficient with SP often
encouraged policies to converge on the same strategy (therefore leading to higher robustness within
its population). AD and AD-RPG both use a population size of two policies.

Figure [5] shows robustness results for different environments in the form of cross-play grids. In
our cross-play grid, each row represents a single seed trained by the specified algorithm. The first
five rows represent SP with an entropy coefficient of 0.01 and the second five represent SP with an
entropy coefficient of 0.05. The following ten rows represent the five pairs of policies from each
run of AD (since we use a population of size two) and the last ten rows represent AD-RPG in the
same fashion. Each column represents the same so that in diagonal entries, both players come from
the same seed. Each square in the cross-play grid represents the average reward of the policies
from the two associated seeds played against one another averaged over 1000 rollouts of the game.
Figure [6] shows the average intra-population cross-play reward for each algorithm: the average of the
cross-play scores from within the population of seeds of each individual algorithm.

Overcooked. SP policies in cramped room and forced coordination often tend to converge on a
single strategy, especially with high entropy regularization (second set of 5 SP seeds). It’s therefore
unsurprising that these seeds perform well with one another. However, their adaptability to strategies
from other algorithms is very poor — they often achieve close to zero reward with other policies.
Take forced coordination for example: even the two sets of SP seeds (with different entropy) are
completely incompatible. On the other hand, AD-RPG performs nearly perfectly with any partner
as evident by the right third of the grid achieving high value. The asymmetry of the grid can be
explained by the asymmetry of roles in forced coordination: the column player is responsible for
picking up onions passed by their partner. AD-RPG, as the column player, is able to adapt to any
strategy for passing the onions while other algorithms are only robust to a single one.

The more complicated layouts of coordination ring and counter circuit allow multiple solutions and
prove a challenge for SP (even with high entropy), achieving very low cross-play rewards. Meanwhile,
AD-RPG is able to maintain much higher cross-play rewards, evident by the higher mean bars in
Figure[6|and the fact that it rarely achieves close to zero reward with itself in cross-play.

Hanabi. In the 3-color and 4-color version of Hanabi, SP with high entropy achieves significantly
higher intra-population rewards than low entropy. We speculate that this is due to the entropy
regularization causing policies to converge on very similar strategies. This is somewhat surprising
given previous works [Bard et al.|[2020, [Hu et al.,2020] on Hanabi and might result from our policies
lacking history-dependence or because the game is simpler with fewer colors, either of which might
make SP policies less likely to develop specialized strategies.

54 RPG Finds Rational Adversarial Examples

In order to explore the effectiveness of AT-RPG, PAIRED-RPG, AP-RPG, and PAIRED-A-RPG, we
use a modified version of STORM, which we call unobserved STORM, in which the agents cannot
observe their partner’s position. This simplifies the strategy space by preventing agents from learning
policies that react to their partner (such as how AD-RPG adapts in cross-play). Figure[/|shows the
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Adversarial Attack

Victim Training AP PAIRED-A-RPG AP-RPG
PAIRED-RPG 0.93 0.0 0.84 0.85
AT-RPG 0.65 0.0 0.72 0.88
AT 0.0 0.0 0.0 0.0
PAIRED 0.13 0.0 0.50 0.42
AD-RPG 0.98 0.0 0.25 0.96
Self-play 0.98 0.0 0.16 0.96
AD 0.00 0.0 0.00 0.00

Figure 8: A rational adver-
Figure 7: The average reward that policies trained by various  sarial example found by AD-
algorithms (“Victim" column) achieve against different adversarial ~ RPG. Both agents assume the
attack types. The “Train" column shows the reward achieved  other will move out of the way,
during training and the following columns show the reward against  preventing progress.
different adversarial attack types. The AP attack trivially achieves
zero reward because it self-sabotages.

performance of various fixed victims against different types of adversarial attacks in unobserved
STORM. The ‘Victim’ and ‘Training’ columns respectively indicate the algorithm used to train
the victim and the reward that the algorithm achieved during training. ‘AP’, ‘PAIRED-A-RPG’
and ‘AP-RPG’ show the performance against these RPG adversarial attacks. Unsurprisingly, every
victim achieves zero reward against the AP attack since the adversary simply learns to self-sabotage
the game by collecting no coins. Likewise, the non-RPG variations of algorithms (AT, PAIRED,
AD) fail during training due to self-sabotage. These results give two other insights about RPG: (1)
PAIRED-A-RPG is more effective than AP-RPG in finding weaknesses, although neither is susceptible
to sabotage, (2) PAIRED-RPG and AT-RPG training lead to more robust policies. Figures[19]to 2]
shows AP, AP-RPG, and PAIRED-RPG attack training curves against these victims.

Overcooked. We tested the ability of AP-RPG to discover weaknesses in fixed policies in the
cramped room Overcooked layout. AP-RPG is able to successfully find weaknesses in a fixed
self-play policy 2 out of 5 random seeds, finding an adversarial policy that achieves rewards of
4.6 and 15.1 respectively, even though this seed achieves a reward of 240 in self-play. Figure [g]
and supplementary video overcooked-AP-RPG illustrates one of these adversarial examples that
AP-RPG finds: instead of simply sabotaging the game like AP, AP-RPG discovers that the victim
(blue) assumes that the agents will move around each other clockwise. The manipulator in AP-RPG
incentivizes the adversary (red) to instead move in a counterclockwise fashion, a perfectly rational
strategy, though it happens to be incompatible with the victim.

6 Related Works

Previous work [[Cui et al}[2023] [Sarkar et al.| [2024] has identified the issue of sabotage in the context
of adversarial diversity and proposed fixes based on making the observation distributions of self-play
and cross-play similar. Our experiments show that the approach from Sarkar et al.[[2024] fails to
prevent sabotage in our environments; see Appendix [C|for a detailed discussion of why.

There are several other paradigms for training more performant or robust policies in cooperative
settings. Approaches based on the setting of zero-shot coordination |Hu et al.|[2020], Treutlein et al.
2021], Muglich et al| [2022]] aim to learn policies that do not depend on arbitrary symmetries of the
game. Several other methods aim make policies robust by training them against a population of agents
Vinyals et al| [2019], Rahman et al. [2022]] or against human-data-informed policies
[2019], | [FAIR], Liang et al.| [2024]. Our work instead directly applies different forms of adversarial

optimization.

A significant part of the technical backing of RPG is based on the line of work on opponent shaping

Foerster et al, 2017} [Kim et al} 2021} [Letcher et al., 2018]. To the best of the author’s knowledge,
RPG represents the first use of opponent shaping in the context of adversarial training. A more recent
line of work [[Lu et all,[2022} [Khan et al.}[2023]] aims to achieve opponent shaping without having to
explicitly compute expensive higher-order gradients. Investigating whether this type of shaping could
be incorporated into RPG to improve efficiency would be an exciting line of future research.
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A Glossary of terms

Acronym Term Definition

RPO Rationality-preserving Policy Optimization Section Equation l
RPG Rational Policy Gradient Section 4] Algorithm
AP-RPG Adversarial Policy — RPG Section[4.4|Appendix[D.1]
AT-RPG Adversarial Training - RPG Section4.4|Appendix [D. ]
PAIRED-RPG Protagonist—Antagonist Induced Regret Min. - RPG ~ Section4.4|Appendix |D. 1|
PAIRED-A-RPG PAIRED-Attack — RPG Section[4.4|Appendix [D.1]

AD-RPG Adversarial Diversity — RPG Section|4.4|Appendix D. 1]

AP Adversarial Policy [Gleave et al.|[2019]

AT Adversarial Training [Gleave et al.|[2019]

PAIRED Protagonist—Antagonist Induced Regret Minimization  [Dennis et al.|[2020]

AD Adversarial Diversity [Cui et al.[[2023]|Charakorn et al.; 2023
SP Self-play [Samuel!|1959]

CoMeDi Cross-play optimized, Mixed-play enforced Diversity  [Sarkar et al.|[2024]

Table 1: Glossary of terms.

B Limitations

RPG relies on higher-order gradients through agents’ learning updates, which introduces significant
computational overhead, especially in high-dimensional domains. Although techniques like Loaded
DiCE enable this in a model-free manner, training requires more compute. Estimating higher-order
gradients from samples has high variance, so large batch sizes are required to stabilize learning. We
found that in some of our experimentation, bad hyperparameters could lead to the manipulator’s
policy collapsing and achieving very little reward.

While RPG enforces rationality constraints by ensuring that base agents only train to maximize their
utility, there is no formal guarantee of convergence to truly rational strategies. Therefore, RPG is
only an approximate solution to RPO.

C Comparison to existing attempts to solve self-sabotage

In this section, we theorize why existing approaches to preventing self-sabotage fail. In order to match
the setting of existing work on self-sabotage [Cui et al., 2023} Sarkar et al.| 2024]], we investigate the
setting of the adversarial diversity (AD) algorithm. The AD algorithm aims to generate a diverse
population of policies by maximizing self-play scores and minimizing cross-play scores within the
population. Consider running AD with a population of size two in the following matrix game:

Player Y
¢Cc D FE F
1109 -1]0
0 |-1109] 1

Player X

Figure 9: The payoff matrix for a cooperative game.

Optimizing the original AD algorithm (along with those from [|Cui et al.,2023| [Sarkar et al.| 2024])
with a population of size two will lead to the solution {(A, D), (B, E)}, achieving self-play scores
of 0.9 and cross-play scores of —1. Both policies are happy to irrationally play D and E instead of
C and F', respectively, trading-off a little bit of score in self-play to greatly increase the cross-play
score. Notably, the actions D and F are strictly worse no matter what their partner plays — clearly an
irrational choice.

As identified in [|Cui et al., [2023| Sarkar et al., [2024]], true diversity should only come from making
trade-offs that are necessary to improve self-play score. Choosing action D over C'is the opposite:
sacrificing self-play score to artificially reduce cross-play score. AD-RPG finds the desired solution
{(4,C), (B, F)} because it constrains the diversity to rational policies and only allows a decrease in
cross-play if it benefits self-play However, just like ordinary AD, the algorithms presented in [Cui
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Figure 10: Graphical representation of the RPG algorithms described in section[D.I] Nodes represent
optimizing agents and outgoing edges represent their optimization objectives. Weights on edges scale
the importance of different objectives such that negative weights indicate minimization.

et al.,|2023| |Sarkar et al., [2024] find the undesired solution { (A4, D), (B, E)}. Both of the algorithms
presented in these works are based on the idea of confusing agents during training so that they do
not know whether they are currently training in self-play or cross-play. They do this by altering RL
training so that the distributions of observations seen during self-play and cross-play are as similar
as possible. However, the example in Figure 0] demonstrates that self-sabotage can happen, even if
there’s only a single observation in the game. No amount of confusion about observation distributions
can prevent self-sabotage, so the approaches in [Cui et al.,[2023| |Sarkar et al., [2024] fail in situations
like this. The experiments shown in Figure d] and Figure I8 demonstrate that these approaches fail in
STORM and Overcooked, too, indicating that the structure of the game in Figure E] may be present in
more complicated environments.

D RPO objectives

D.1 A Graphical Language for RPG Algorithms

In order to simplify specifying and interpreting RPG algorithms, we introduce a graphical language.
Agents (base agents and manipulators) are represented by nodes and an agent’s loss function is
represented by a collection of triples that can be visually represented by outgoing edges in the graph.
A triple is defined by the optimizing agent (i.e. the node that the edge is coming out of) and the two
agents being evaluated.

Figure[10] shows the graph for all RPG algorithms. Let us use AP-RPG as an example. It includes
three agents: the victim, adversary base agent, and adversary manipulator. The victim is fixed,
indicated by having no solid outgoing edges. The adversary base agent has two outgoing edges,
one for training against its manipulator (with weight 1 — €), and one for partner-play against the
victim base agents (with weight €). The adversary manipulator has a single outgoing edge pointing
to the victim’s reward when the adversary base agents and victim base agents are evaluated against
one another. The weight of -1 on this edge indicates that the adversary manipulator’s loss wants to
minimize this value.

D.2 Adversarial Training-RPG
The objective for adversarial training-RPG is

I]\Illln Uvictim (Wadversary 5 inctim) s
T adversary

max Uyictim (ﬂ'adversary 5 inctim) s (5)

Tvictim

.. Tadversary € BR(TFM ).

adversary

13



D.3 Adversarial Policy-RPG
The objective for adversarial policy-RPG is

I]&lill Usictim ('/Tadversarya inctim) y
Tradversary (6)

M
S.t. Tradversary €eB R(ﬂ—adversary)‘

Notice that AP-RPG is identical to AT-RPG except that the the victim is fixed.

D.4 PAIRED-RPG
The objective for PAIRED-RPG is

I]I&&X Uvictim (’/Tadversarya '/Tantagonist) - Uvictim (ﬂ—adversarya 7T];)rotagonist)a

adversary
max Uvictim (’/Tadversary ) 7Tprotagonist) )
TUprotagonist (7)

max Uvictim (ﬂadversarya '/Tantagonist)a

Tantagonist

M )
adversary /

St. Tadversary € BR(T

D.5 PAIRED-Attack-RPG
The objective for PAIRED-A-RPG is

I]{}ax Uvictim (Wadversarya 71'antagonist) — Usictim (ﬂ'adversarw 7'rprolagonisl)a

adversary

maxX Uyictim (ﬂ'adversarya ﬂ-antagonist)a ¥

TCantagonist
M )
adversary /

S, Tadversary € BR(T

Notice that PAIRED-A-RPG is identical to PAIRED-RPG except that the protagonist (which acts as
the victim) is fixed.

D.6 Adversarial Diversity-RPG

The objective for adversarial diversity-RPG with a population size of m is

A .

max Z Ui(ms,m;) — s Z AUi(m,m)
m ze[m] je[m],j;ﬁl

st. m € BR(rM) Vi€ [m],

7

&)

where A\ weighs the relative importance of minimizing cross-play. Our experiments use A = 0.25.
Note that we only apply AD-RPG to cooperative settings.
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E RPG Details

E.1 Estimating Gradients with Samples

In model-free settings, gradient computation must be performed via sampling. Traditional RL
surrogate losses are sufficient for single-order gradients, but we need a different surrogate loss for the
manipulator gradients that preserves all dependencies (in our case, the manipulator’s influence on the
base agents’s update) of the higher-order gradient. We use DiCE [Foerster et al.,|[2018]] to define a
surrogate loss that admits computing valid higher-order gradients through autodiff. Let E be a set of
rollouts between agents relevant to the optimization objective O;. The manipulator loss is defined as:

L2 =3 we. Yy AO{al S ) (10)

ecE t

where {a JEP, M} denotes the set of actions when the base agents trains with its manipulator during
lookahead, w, is the we1ght (e.g., +1 for maximize and —1 for minimize) specified by the optimiza-
tion objective, and 7% are the associated rewards between the two base agents specified by e. [ is the
magic box operator from [Foerster et al.,|2018]. In our experiments, we use Loaded DiCE [Farquhar
et al.,|2019], allowing us to compute higher-order gradients over advantage estimates. The loss for

each base agent is simply
L= ZweZ'y log( at|st)) (11)
eckl t

the sum of rewards for different training partners rescaled by the training weight (e.g., w. = €) for
partner-play.

E.2 Implementation details

RL algorithm. Our implementation of RPG uses actor-critic with a single epoch and update as
the RL algorithm. We initially considered trying PPO, but realized that clipping might interfere
with the higher-order gradients, leaving the implementation of more sophisticated RL algorithms
to future work. For the same reason, only the manipulators use a max gradient norm. We use a
separately learned centralized critic for each pair of agents rolled out in the underlying game. All of
our experiments also use entropy regularization.

Choice of optimizer. Since the manipulators need to take gradient’s through the base agent’s update,
the base agent’s optimizer update must be differentiable. Many modern optimizers for deep learning
incorporate methods such as momentum, which might make it more difficult for the manipulator’s
to estimate their influence on their base agent. In our experiments, we show that our methods work
whether we use vanilla SGD or adam optimizers [Kingmal [2014].

Normalization. We also find that properly normalizing advantage estimates for each agent is
important: each agent normalizes the advantage estimates associated with each of their training
partners together. We also tried normalizing advantages between training partner’s independently but
learning proved to be more unstable.

Variable learning rates. Using different learning rates between the manipulator and the base agents
is often important. We find that it is often necessary to use a significantly larger manipulator learning
rate than base agent learning rate to magnify the manipulator’s ability to influence the base agent’s
learning. We also find that using different learning rate in the base agent lookahead vs. its actual
update step is important. A larger inner base agent learning rate allows the manipulator to project
the base agent’s update further into the future, similar to using a additional lookahead step, except
without the added computational burden.

Partner-play. Partner-play regularization also makes a manipulator’s optimization problem more
difficult: if a manipulator wants to minimize the score between two base agents, it cannot simply
make sure its base agent’s training is trivially out-of-distribution. We find that in the case of AD-RPG,
a small partner-play (0.05 - 0.1) is more effective at finding genuinely diverse solutions while a
large partner-play (0.1 - 0.2) is more effective at robustifying policies. Too large of a partner-play
eliminates the manipulator’s influence over the base agent entirely, rendering RPG useless.
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E.3 RPG hyperparameters
Table 2] contains the RPG hyperparemeters used in the experiments for each of our environments.

Table 2: RPG hyperparameters for different environments

Hyperparameter Matrix STORM  Overcooked Hanabi
Optimizer SGD Adam Adam Adam
Manipulator LR 1x1072 8x1073 1x1073 2.5 x 1073
Base LR 1x1072 1x107* 2x 1074 5x 1073
Base lookahead LR 1x107" 4x10* 2x 1074 5x 1073
Batch size 128 256 512 128
Discount factor (v) 0.95 0.99 0.99 0.99
GAE parameter () 0.95 0.99 0.99 0.99
Loaded DiCE coef (1)) 0.95 0.99 0.99 0.99
Value function coef. 0.5 0.5 0.5 0.5
Entropy coef. 0.0 0.01 0.01, SP: 0.05 0.01, SP: 0.05
Manipulator max gradient norm 0.5 0.5 0.5 0.5
Partnerplay coefficient 0 0.15 0.1 0.1

E.4 Compute Resources
Experiments were all performed on single GPUs (a mix of A4000s and A6000s) on a local SLURM

cluster using 32 cpu cores and 50Gb of RAM. Seeds for all experiments took between a minute up to
24 hours to run.
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F Environment descriptions

F1 STORM

Figure 11: A visualization of the storm environment with green and red coins and the agents in
orange and blue. Their 5x5 observation windows are illuminated in front of them.

The Spatial-Temporal Representations of Matrix Games (STORM) environment
is visualized in Appendix [} The agents move around the grid and collect green and red coins while
only observing a limited area directly in front of them. The agents can ‘interact’ by getting near each
other and playing the ‘interact’ action. When the agents interact, a coin is randomly chosen from the
ones they have picked up. The agents both get a reward of +1 if they interact with the same colored
coin, and O otherwise.

Our experiments also investigate two modifications of the original STORM environment. In the
first modification, which we refer to as unobserved STORM, agents’ observations no longer include
their partner’s position. We use this modification to simplify analysis by eliminating the possibility
of strategies that react to their partner’s policy. In the second modification, both agents receive a
reward of -0.1 when either agent stands in grid position (0,0). We use this modification to exemplify
sabotaging behavior exhibited by the CoMeDi [Sarkar et al.,[2024] baseline.

Figure 12: Visualization of various Overcooked layouts in their initial positions. From left to
right: Cramped Room, Coordination Ring, Counter Circuit, Asymmetric Advantages, and Forced
Coordination.

F.2 Overcooked

Overcooked [[Carroll et al}; 2019] is a cooperative game where players control chefs working together
in a kitchen to prepare and serve meals under time constraints. The agents need to work together to
gather multiple ingredients into a pot, wait for the soup to cook, and then plate and deliver the dish.
We perform experiments in a variety of Overcooked layouts.

F.3 Hanabi

Hanabi 2020] is a cooperative, imperfect-information card game that has been a corner-
stone of recent coordination benchmarks. Players work together to arrange a shared set of colored,
numbered cards in order. Each player holds their cards facing outward, unable to see their own hand
but able to see others’. Players provide limited hints to teammates about their hands, constrained by a
finite set of clue tokens. The challenge lies in deducing one’s own cards and playing them correctly
without direct knowledge. It is difficult to coordinate in Hanabi because strategies often rely on
arbitrary signaling strategies to communicate information to teammates. Hanabi is typically played
with 5 colors and 5 ranks, but we experiment with a version that uses 3 colors and 3 ranks as well as
a version that uses 4 colors and 4 ranks.
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G Additional results

G.1 Matrix Games

G.1.1 RPG stabilizes learning dynamics.

10 _ A7 Y AR sy m—— e ——
=
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4
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0.0 1 T T T T T
0 1000 2000 3000 4000

Samples

Figure 13: A larger RPG lookahead stabilizes learning dynamics and allows them to converge on an
unstable equilibrium.

It is well known that multi-agent problems can have unstable learning dynamics [Claus and Boutilier]
1998, [Bowling and Velosol 2002]. However, a large enough number of lookahead steps in RPG helps
stabilize learning, leading to convergence. Figure[I3]shows the reward of the learned victim policy in
various runs of AT-RPG for the matrix game from Figure[2| The solutions converge on playing an
equal mixture between actions A and B even though this is an unstable equilibrium. By allowing the
manipulator to look several steps forward through the learning of the base agents, it can anticipate that
the victim could respond to a deviation which would ultimately decrease the manipulator’s objective.
We observed the effect in RPG algorithms across a variety of matrix games. See Appendix [G.I|for
more details.

G.1.2 Understanding How RPG Behaves through Various Matrix Games

Player Y
C D FE
Player X 1 109} 0
0 |—-1] 1

Figure 14: A common-payoff game with a dominated action.

Consider the problem of finding two different pairs of diverse strategies in the matrix game in Figure
[[4] using adversarial diversity (AD). Imagine for a moment that column D did not exist. Clearly, the
most diverse population of successful strategy pairs would then be the solutions (A, C) and (B, E):
both pairs of strategies get the maximum self-play score of 1 and the minimum cross-play score of 0.
Now, consider adding column D back in: Player Y could change their action in the first pair from
C to D. This greatly improves the diversity metric by decreasing the cross-play score to -1 while
only losing a little bit of score in self-play. However, Player Y choosing to play action D over C
is clearly a case of sabotage: not only are they intentionally reducing their score in cross-play, they
are doing it at the cost of self-play performance! In fact, action D is strictly dominated by action
C': it performs worse in all scenarios. Not only do agents artificially sabotage their performance in
cross-play by playing action D, they do it at the cost of self-play performance. Existing work [Cui
et al.,[2023] |Sarkar et al., | 2024] fails to prevent sabotage in these types of scenarios because it does
not depend on a different in observation distributions between cross-play and self-play.

Figure [[5]shows a mixed-motive game with a sabotage option. AT and PAIRED sabotage by playing
action E. AT-RPG converges on playing a uniform mixture across the two rational policies while
PAIRED-RPG converges on one of the two equilibria. AD converges on one sabotage policy and one
at equilibrium while AD-RPG converges on the two equilibrium.

Figure [I6 shows a cooperative game. Suppose the victim in AT is Player X and the adversary is
Player Y. In this case, AT oscillates between playing C and D to minimize the victim’s reward. On
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Figure 15: A mixed-motive game with a sabotage option.

A
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Figure 16: A mixed-motive game with a sabotage option.

the other hand, since such an adversary is irrational, the adversary in AT-RPG will just play action E.
Likewise, AD finds artificially diverse solutions by playing (A, C') and (B, D). Both sets of policies

in AD-RPG just play action F, the only rational action.

Player X

Player Y

C

0,0

1,-1

~10, —10

Figure 17: A mixed-motive game of ‘chicken’.

Figure [17|shows the mixed-motive game of ‘chicken’. In this case, AT and AT-RPG solutions align
and always play action D to minimize the victim’s reward, forcing them to play the conservative

action of A.
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Figure 18: CoMeDi learns to sabotage in a modified version of STORM that allows easy sabotage.
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Figure 19: Training curves for AP applied to various victims in the unobserved STORM environment.
As expected, AP immediately learns to sabotage, revealing nothing useful about the robustness of

each victim.
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Figure 20: Training curves for AP-RPG applied to various victims in the unobserved STORM
environment. AP-RPG avoids the problem of sabotage but inconsistently finds weaknesses in victim

policies.
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Figure 21: Training curves for PAIRED-RPG attack applied to various victims in the unobserved
STORM environment. PAIRED-RPG attack consistently finds weaknesses in victim policies while

avoiding the problem of sabotage. These results also highlight that PAIRED-RPG and AT-RPG can
produce more adversarially robust policies.
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