© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Expedited Learning in MDPs with Side Information

Melkior Ornik, Jie Fu, Niklas T. Lauffer, W. K. Perera, Mohammed Alshiekh,
Masahiro Ono, and Ufuk Topcu

Abstract— Standard methods for synthesis of control poli-
cies in Markov decision processes with unknown transition
probabilities largely rely on a combination of exploration and
exploitation. While these methods often offer theoretical guar-
antees on system performance, the number of time steps and
samples needed to initially explore the environment before syn-
thesizing a well-performing control policy is impractically large.
This paper partially alleviates such a burden by incorporating
a priori existing knowledge into learning, when such knowledge
is available. Based on prior information about bounds on the
differences between the transition probabilities at different
states, we propose a learning approach where the transition
probabilities at a given state are not only learned from outcomes
of repeatedly performing a certain action at that state, but
also from outcomes of performing actions at states that are
known to have similar transition probabilities. Since the directly
obtained information is more reliable at determining transition
probabilities than second-hand information, i.e., information
obtained from similar but potentially slightly different states,
samples obtained indirectly are weighted with respect to the
known bounds on the differences of transition probabilities.
While the proposed strategy can naturally lead to errors in
learned transition probabilities, we show that, by proper choice
of the weights, such errors can be reduced, and the number
of steps needed to form a near-optimal control policy in the
Bayesian sense can be significantly decreased.

I. INTRODUCTION

This paper concentrates on the problem of effectively
controlling an agent moving in an unknown environment.
This question was investigated in a number of previous
papers (e.g., [4], [5], [9]) and is of significant practical
interest. In particular, remote vehicles sent into an unexplored
environment need to deal with uncertainties in the system
dynamics [10], [12] while working to accomplish their task.

A natural example of a system operating in unknown
environments, and one we use in the numerical experiments
in Section V, is of a Mars rover performing tasks on the
surface of the planet. In that case, some information on the
motion dynamics generated by the soil has been previously

This work was partly funded by awards 1646522 and 1728412 from
the National Science Foundation, N000141712623 from the Office of
Naval Research, WO11NF-15-1-0592 from the Army Research Office, and
WOI11NF-16-1-0001 from the Defense Advanced Research Projects Agency.

M. Ornik, N. T. Lauffer, M. Alshiekh, and U. Topcu are with the Institute
for Computational Engineering and Sciences, University of Texas at Austin.
mornik@ices.utexas.edu, nlauffer@utexas.edu,
malshiekh@utexas.edu, utopculutexas.edu

J. Fu is with the Electrical & Computer Engineering Department, Worces-
ter Polytechnic Institute. jfu2@wpi.edu

W. K. Perera and U. Topcu are with the Department of Aerospace
Engineering and Engineering Mechanics, University of Texas at Austin.
kasun81l91@utexas.edu

M. Ono is with the Jet Propulsion Laboratory, California Institute of
Technology. ono@jpl.nasa.gov

obtained by orbiters, but such information is partial and
coarse. The rover’s mission is to traverse the planet’s surface
in order to investigate different areas of interest. As the
chance of the vehicle breaking down over time increases, and
maintenance is not feasible, it is imperative for the rover to
perform its mission as efficiently as possible [3]. However,
in order to perform the mission, the rover needs to learn,
in some way and within some error bounds, the underlying
dynamics that it will use to perform near-optimal planning
with goal-directed and obstacle avoidance missions.

The setting in this paper is based on a finite Markov
decision process (MDP). That is, the state space is finite (e.g.,
through a discretization of a continuous environment), and at
every point in the state space, the agent can choose one action
from a finite set of actions. The agent’s state and the chosen
action then yield a probability distribution on the allowed
transitions. In many practical cases, these probabilities are
not fully known, but are to be estimated from real data.

The usual approach for control in MDPs with unknown
transition probabilities sets up a trade-off between explo-
ration and exploitation, where the agent balances between
a reward obtained by its expectation of successfully meeting
the control objective and a reward for visiting previously less
visited states, the latter of which helps the agent learn the
unknown transition probabilities. A number of algorithms
within such a framework have been produced, including
algorithms in the probably approximately correct in Markov
decision processes (PAC-MDP) class (e.g., [2], [8], [15]) and
the Bayesian exploration bonus (BEB) [9].

A bottleneck of the above process is in learning of the
unknown transition probabilities. The agent learns by trial;
each visit to a state and a subsequent action generate a
sample that indicates where the agent went after taking the
said action. Given enough samples, the agent can infer the
transition probabilities at that state-action pair with high
confidence. However, the number of samples necessary to
produce an accurate model of the MDP is often impractically
high, especially in systems with a large number of states.

This paper proposes a novel strategy for collecting samples
and speeding up the learning of the transition probabilities.
More specifically, it is often the case that states that are
physically closer to each other have similar, albeit not same,
transition probabilities. A similar observation is notably
referenced in Tobler’s first law of geography: “Everything
is related to everything else, but near things are more related
than distant things” [16]. Thus, if we possess some side
information in the form of bounds on differences between
transition probabilities at different states, then samples could

be partly reused, with the importance of each sample corre-
sponding to the similarity between the state from which it
was obtained and the state at which it is being applied.

It is clear that the proposed approach of indirect sampling,
where samples obtained from similar states are also used
to estimate transition probabilities, will lead to errors in
estimates of transition probabilities. Nevertheless, if the
importance, i.e., weight, of each such indirectly obtained
sample is properly chosen, we show that these errors will
remain small. Additionally, for the price that we pay by
possibly inaccurate estimates, we receive a speed-up in
sample collection. The desired level of trade-off between
accuracy and learning speed depends on the needs of a
particular application, and lower accuracy may slow down
agent’s progress toward its goal. On the other hand, in the
numerical experiments (in Section V) we show that a simple
model of a Mars rover can use indirect sampling in order to
reach its final objective significantly more quickly.

The outline of the paper is as follows. In Section II, we for-
mally introduce the setting, and present a method for indirect
sampling. In Section III, we provide bounds on the errors in
transition probabilities estimated using an indirect sampling
approach, depending on the weights assigned to indirectly
collected samples. We further discuss a particularly attractive
class of possible weights, and provide bounds on errors
in estimated transition probabilities when those weights are
used. Section IV focuses on the theoretical development of
a control strategy for unknown MDPs using the method of
indirect sampling. After providing a short description of the
BEB method for generating a near-optimal control policy in
the Bayesian sense for MDPs with unknown probabilities, we
present an improved bound for the number of steps required
to converge to a near-optimal control policy in the Bayesian
sense using BEB with indirect sampling. Finally, Section V
presents the numerical experiments performed on the setting
of a Mars rover. Particularly, Section V-A examines the
trade-off between accuracy and speed when the agent’s sole
objective is to learn the transition probabilities in an MDP,
and Section V-B discusses the influence of indirect sampling
on the reduction in a number of time steps necessary for an
agent to complete a simple control objective.

Notation: For a finite set A, |.A| denotes the number
of its elements. For € R", ||z||; denotes its 1-norm. For
x € R, [z] denotes the smallest integer y such that z < y.

II. INDIRECT SAMPLING

Consider a Markov decision process (MDP) M =
(S, A, P), where S and A are the finite state set and set of ac-
tions, respectively, and P : Sx AxS — [0, 1] is the transition
probability function; it satisfies), 4 P(s,a,s’) = 1 for all
s € 5, a € A. We assume that the values of the transition
probability function P are unknown at the beginning of a
system run.

We study two objectives:

(a) Learn the transition probabilities as quickly and as
accurately as possible.

(b) Given a reward function R : S x A — R, ¢ > 0, and
a horizon length H > 0, find, as quickly as possible, a
control policy which ensures a nearly maximal expected
reward for the agent over H time steps. That is, find a
policy 7* : S x {1,2,...,H} — A such that, for all
S1 € S,

(D

max F
s

H
Z R(s:,7(sr, T))] —¢,
T=1

where s is the state of the system at the 7-th time step.

Learning the transition probabilities in unknown MDPs
proceeds by collecting samples — outcomes of agent’s
actions taken at every time step. In standard exploitation-
exploration strategies such as PAC-MDP [8] or BEB [9],
an action taken at a single time step provides exactly one
sample. More formally, this learning algorithm, which we
will in the future refer to as direct sampling, requires defining
a success counter «: S x A x S — [0,400) and a sample
counter o : S x A — [0,400). Both counters are initialized
to 0, and every time action « is played at state s, ag(s,a)
is increased by 1. If such an action resulted in the system
state moving to s’ € S, the success counter (s, a, s’) is also
increased by 1. Then, the transition probability P(s,a,s’) is
estimated by P(s,a,s") = a(s,a,s")/ao(s, a).

A state-action pair (s, a) is considered known if ag(s,a) >
m for some threshold m. We note that, based on Hoeffding’s
inequality [7], when «aq(s,a) > ﬁ log 2, with probability
1—4 the difference between the estimated and the true transi-
tion probability is at most x. Thus, after a sufficient number
of samples has been collected, further sample collection is
largely unnecessary.

In this paper, we wish to exploit the side information that
we may have about the system in order to increase the speed
of sample collection. In particular, assume that we know that
some of the states have similar, but not necessarily same,
transition probabilities. (The notion of similarity between
transition probabilities will be formalized in Definition 1.)
We will consider such states similar. The sampling approach
in the direct sampling algorithm could then be modified in
the following way: all similar states can be considered the
same, and all samples collected at one state can then equally
count at any state similar to it. This approach will certainly
significantly increase the number of samples obtained at
every time step. However, counting similar states as being
exactly same is a vast simplification of the actual dynamics.
It does not allow for nuances in similarity between different
states, and may hence lead to large errors in learned transition
probabilities.

The central contribution of this paper is to provide a
framework for a more subtle approach, where each sample
is assigned a certain weight when being counted towards
learning the dynamics of states other than the one it was
collected at. We remark that such an approach is similar to
the methods used in kernel density estimation (see, e.g., [6]).

Let us first introduce a measure of distance between two
transition probabilities. This definition is motivated by the
notion of e-bisimulation [17]. The difference is that the
definition below applies to states within a single MDP, as
opposed to a distance between states of two similar processes
as in [17].

Definition 1: Let s,5 € &, and let 0 < ¢ < 1.
States s and S are e-distant if there exists a permutation
IT:S — S such that for any s’ € S and any a € A,
|P(s,a,s") — P(5,a,1I(s"))] < e.

In plain words, permutation II from Definition 1 encodes
“similar movement”. To take the example of a Mars rover
moving over a discretized terrain, if s’ is the state immedi-
ately to the north of s, then II(s’) is the state immediately
north from state 5. We note that IT depends on s and &s.
However, in order not to bloat the notation, we will only
emphasize this dependence when necessary.

In the remainder, we use the following notation. Let map
d: SxS8 — [0,1] be defined so that d(s,3) is the
smallest value such that states s, 5 are d(s,3)-distant. The
side information used in this paper consists of upper bounds
on the values of d; these bounds can be obtained from
prior observations and analysis of environmental features, as
briefly described in the introduction and in Section V. Defi-
nition 2 introduces weighting functions, based on Definition
1 and the above distance function d.

Definition 2: Function w : [0,1] — [0,1] is a weight-
ing function if it is monotonically decreasing and satisfies
w(0) =1, w(l) = 0.

The proposed approach to sampling, given a weighting
function w, is given in Algorithm 3. As is usually done with
direct sampling, in order to obtain the theoretical results of
Section III and Section IV, we specify that lines 7-10 in
Algorithm 3 are only performed if the state-action pair (s, a)
is not yet known, i.e., ap(s,a) < m.

Algorithm 3 (Weighted sampling)

1 Leta(s,a,s’)=0forall s,s’ €S, a€ A

2 Letag(s,a)=0foralls€ S, ac A

3 repeat at each time step

4 Let s be the state of the system at the beginning

of the time step.

5 Let a be the performed action.
6 Let s’ be the resulting state of the system
after performing action a.
foralls € S

a(s,a,I1(s")) := a3, a,I1(s")) + w(d(s,3))

a0(3,a) := ao(s,a) + w(d(s,3))
10 end for
11 for all 5,5 € S,ac A
12 P(3,a,5) := a(35,a,5") /o (5, a)
13 end for

14 end repeat

Remark 4: In order to avoid dividing by 0, values of cg in

Algorithm 3 are, instead of being initialized to 0, sometimes
initialized to a small positive value.

We note that the Algorithm 3 results in at least increasing
the sample and success counters at every state-action pair that
was played by 1, as d(s, s) = 0 by Definition 1, and w(0) =
1 by condition (i) of Definition 2. Hence, regardless of the
weighting function used, the weighted sampling algorithm
results in collecting samples at least as quickly as the direct
sampling algorithm. In fact, Algorithm 3 is a generalization
of the direct sampling algorithm: direct sampling occurs if
we take w(d) = 0 for all d > 0, w(0) = 1.

III. BOUNDING THE ERROR IN PROBABILITY ESTIMATES

The error in estimated probabilities using the weighted
sampling algorithm will depend on the choice of a weighting
function. As mentioned, if we set w(d) = 0 for all d € (0, 1],
there will be no error in estimated transition probabilities
caused by second-hand (i.e., indirectly collected) samples,
but we would not be using any side information. In general,
consider the process described in Section II for learning
the transition probability P(s,a,s’). Before probabilities
P(s,a,-) are deemed to be known, the algorithm needs to
collect m samples, i.e., reach (s, a) = m.

For simplicity, we define w : S x S — [0, 1] by

w(s,s') = w(d(s,s)).

Additionally, let #¢(s, a) denote the number of visits by the
agent to s where a was performed (before (s, a) exceeded
m), and let #(s,a,s’) denote the number of visits by the
agent to s where a was performed, and the agent proceeded
to move to s'. The estimate P(s,a,s’) of P(s,a,s’) based
on the collected m samples using the weighted sampling
algorithm is

k
- afs,a,s") w(s, s;)#(si,a,)
P / _ s Wy _) y Wy 9q
(ans') = S0 =5 =l
3 Folsna) #lsas) Zk ~
0(Si, a 84, Ay S5 /
= w(s, i) - : = WiP;»
i=1 (51 m #o(sia) o
where s1,...,5, € S are states from which some samples

were collected, and s, = TI(s’), with II being defined
with respect to s and s;, as described in Definition 1.
In (2), we defined w; = w(s,s;)#o(si,a)/m < w(s,s;),
and p, = #(ss,a,s};)/#0(si,a). We note that p is an
estimate of P(s;, a, s;) using just directly collected samples.
Additionally, > w; = 1, because the total number of col-
lected samples equals exactly > w(s, s;)#0(si, a) = m, and
#o(ss,a) < a(s;,a) =m.
We want to find a bound on the error

k
Z w;p; — P(s,a,s")
i=1

e =|P(s,a,s') — P(s,a,s")| =

3)

We make the following assumption.

Assumption 5: For all s; € S, p, = P(s;,a,s}).

Assumption 5 ensures that the probability estimate p},
obtained from directly sampling (s;, a), is equal to the true

probability P(s;,a,s}). Of course, this equality does not
generally hold, but, if (s;,a) was directly sampled enough
times, then by the law of large numbers p will indeed be a
close approximation of P(s;,a,s}).

Going back to (3), by triangle inequality, Assumption 5,
and using that Y w; = 1, we obtain

k
e < Zwi|P(si,a,s;) — P(s,a,s")|. 4)
=1

Assuming without loss of generality that |P(s;,a,s}) —
P(s,a,s")|, i = 1,...,k, is a decreasing sequence, and
remembering that w; < w(s,s;), the right-hand side in (4)
can be bounded by Zizl w(s, si)|P(s;,a,s,)—P(s,a,s)|+
@i1|P(si41,a,8,,) — P(s,a,s")|, where [< k — 1 and
@41 are such that Zizl w(s,8;) + w41 =1 and @41 <
w(s, Si+1)-

We note that |P(s;,a,s,) —
definition of d. Hence,

P(s,a,s")| < d(s,s;), by

MN

e <y w(s,s;)d(s,si)+ @rp1d(s, si41),)

1

.
Il

with w(s,s1) + ...+ w(s,s;) + 41 = L.

By a proper choice of the function w, i.e., w, error e from
(5) can be made as small as desired. However, such a choice
may reduce the speed-up in sample collection. The optimal
choice of w is dependent on the application. In order to give
a more concrete discussion of the trade-off between speed
and accuracy, in the remainder of this section we examine
the class of weighting functions given by

wn(d) = (1 —d)", (6)

where n > 0, with wy(1) = 0. The following statements
hold:

(i) For all n > m and all d € [0, 1], wy,(d) < wy,(d),
(ii) for all d € (0, 1]; wy(d) — 0 as n — oo,
(iii) for all d € [0,1); and w,(d) — 1 as n — 0.

By (ii), as n — oo, the weighting function w,, places more
and more importance on accuracy rather than the speed of
sample collection, as the generated weights will be lower and
lower. On the other hand, by (iii), as n — 0, more importance
is placed on the speed of sample collection than accuracy.
These properties allow to explore the speed-accuracy trade-
off in a simple fashion, by changing n.

Let us now interpret the error bound obtained in (5) for
the class of weighting functions in (6). By defining y; =
wr(s,s;) = (1 —d(s,s;))", from (5) we obtain

l
e <>yl =y + @ (1 -y, @)
i=1

with y1 + ... +y + @41 = 1. Since w;11 < Y41, the
expression on the right-hand side of (7) can be bounded from
above to obtain e < 22:1 yi(1— yj/") +a1(1— a)ll-"/-?) =

1— 22:1 yi1+1/n —oDll_tll/n. By Jensen’s inequality (see, e.g.,

[13]) and by plugging in > y; + &1 = 1, we get an upper
error bound

1 1/n 1 1/n
<l—{(— <1—|-— .
=) = (s)

We note that for a fixed |S|, e — 0 as n — oo. We also
remark that the error bounds in the above section do not
depend on the quality of the side information, i.e., the rela-
tionship between d(s, s;) and true differences |P(s,a,s’) —
P(s;,a,11(s"))|. Naturally, if the true differences between
transition probabilities at s and s;, s; € .9, are significantly
smaller than d(s, s;), the obtained errors will be smaller than
the above bounds guarantee.

IV. REDUCTION IN SAMPLE COLLECTION BOUNDS

Section III bounds the error in learned transition proba-
bilities using the sampling approach described in Section II.
We now discuss another aspect of the proposed approach, the
increase in sample collection speed. Generally, this increase
is difficult to quantify, for two reasons:

o The amount of samples that will be collected at every time
step heavily depends on the “geometry of the MDP”, i.e.,
on the state that the agent is in at any time and on the
bounds on differences between transition probabilities at
that state and all other states in the state space.

« Different approaches to control in unknown MDPs offer
slight nuances of when to terminate learning, and how
much importance to place on sample collection as opposed
to environment exploitation.

In order to deal with the latter point, this section will
concentrate on examining the increase in sample collection
speed in the case of Bayesian exploration bonus (BEB) [9],
with the understanding that similar discussions will hold for
PAC-MDP or other popular approaches.

We now give a brief description of BEB. For more details,
we refer the reader to [9]. BEB aims to find a solution
to the problem of finding an optimal control strategy in
the setting of unknown MDPs by choosing a control action
that maximizes a combination of the expected reward (given
the current estimates of the transition probabilities) and an
exploration bonus that entices the agent to learn the transition
probabilities more accurately. Formally, at every time step, if
the agent is at state s € S, it chooses the action a* € A that
maximizes Vi (s,a) (recall that H is the horizon length),
where Vj, : S x A — [0,+00) is given recursively by

Vi(5,a) =R(5,a) + TroGa) 05(5 o)
+ Z p<§7aa Sl>Vk*fl(S/)’ (8)

s’eS
Vo(s,a) =R(s,a),

where P is the current estimate of the transition probability
function P : S x A x S — [0,1], and V" ,(s') =
max, Vi_1(s',a). We note that, when calculating V5 _, (s)
in the recursion for Vi (s, a), we are acting as if the system
already went from s to s, and this additional time step

slightly changed «(s’,a) and the estimated probabilities.
Then, when calculating V};_,(s”) in the recursion for
Vir_1(s"), we assume that the system went from s through
s’ to s, and so on.

Like the alternative approaches based on PAC-MDP, after
some initial finite number of time steps which are primarily
dedicated to learning the transition probabilities, BEB devel-
ops a policy that is nearly optimal in the sense of (1). Unlike
PAC-MDP, the policy developed in BEB is near-optimal only
in the Bayesian sense, i.e., it makes the system behave nearly
optimally given the estimates of the transition probabilities,
which may not be the same as the true probabilities. The
notion of estimate-based optimality used in BEB perfectly
fits the framework of this paper, as weighted sampling can
potentially lead to an error in learned transition probabilities.

The primary objective of this section is to give an estimate
of the savings in the number of time steps needed before the
BEB algorithm, now with weighted sampling, converges to
a near-optimal Bayesian policy.

By [9], the number of time steps needed before BEB (with
the direct sampling algorithm) converges to a near-optimal
policy with probability 1 — § is bounded by

6
o ((SIAH" 18141 o

g2 0

with H and ¢ as defined in objective (b) in Section II. An
outline of the derivation of (9) is provided in the Appendix
as it relates to the upcoming discussion.

As the weighted sampling algorithm provides both directly
and indirectly collected samples, the number of steps neces-
sary to collect sufficiently many samples for convergence of
BEB may be lower than for the direct sampling algorithm.
Let us first give an improved bound for the case in which
the distances between any two states in the state space are
equal.

Proposition 6: Let d € (0,1). Assume that d(s,s") = d
forall s,s" € S, s # s'. Let p = w(d) and m = H3/e. Then,
BEB with weighted sampling converges to a near-optimal
policy with probability 1 — § after

H?(1—(1—p)!5]
A (L IS B (g4
5 log 5

0 (10)

time steps.

Proposition 6 is proved in the Appendix. We note that,
when p — 0, bound (10) recovers the original bound (9).

It is of interest to generalize Proposition 6 to the case
where the states are not equidistant. We present one such
generalization, in which the states that are known to be sim-
ilar are clustered together. Let S be partitioned into h subsets
S1,...,Sh. Let diam,(S) = maxi<;<p max, ges, d(s, s').
We obtain the following result.

Theorem 7: Let p = w(diam.(S)), m = H?/e, and
M = max; |S;|. Then, the required number of time steps
for convergence of BEB with weighted sampling with prob-

ability 1 — 9 is

H3(1-(1—-p)M
A (OGP 4 M) B gsja
€ &)
The proof of Theorem 7 directly follows from Proposition
6, by separating any path ® in S x A into paths in each of
the clusters S1 x A, ..., S, x A. Hence, we omit the details.
Remark 8: With some technical adjustments, and consid-

ering that Theorem 7 holds for any partition of .S, (11) can
be improved to

3 h 1—(1—p; ISl
Al (18 + 4 £, S05) siia
. log 5

Y

O | min

with p; = w(max; ses, d(s,s’)), and where the minimum
goes over all h and all partitions of S into Si,..., Sh.

V. NUMERICAL EXPERIMENTS

We now demonstrate the proposed algorithm on a set-
ting of a Mars rover moving across a partially unknown
terrain. In order to replicate the situation more accurately,
the simulation setting is based on a high-resolution map of
terrain types in the Mars Jezero crater obtained from the
Mars Reconnaissance Orbiter. Jezero crater is of particular
prominence as one of the potential landing sites of the Mars
2020 rover mission [18].

We converted the map into an MDP setting as follows.
We discretized the terrain into tiles, with the set of all tiles
forming the state space S for the MDP. Each tile belongs
to one of the three terrain types: benign, rough, and rippled.
The types were roughly adapted from [11]. Fig. 1 illustrates
the 50 x 50 grid used in Section V-A.

Fig. 1. The terrain map used as a state space in Section V-A. On the
left is the original high-resolution Jezero crater map of terrain types. Each
color represents a different terrain type: black terrain is benign, grey terrain
is rough, and white terrain is rippled. The coarser 50 x 50 grid used in
simulations of Section V-A is given on the right.

Different types vary in the level of similarity between
transition probabilities at neighboring tiles, as well as in
the slip rate, i.e., the probability of the rover moving in
a direction that was not intended. In our simulations, tiles
of the benign type have an slip rate around 0.05, and every
two neighboring tiles of that type are known to be no more
than 0.03-distant. Rough type has a slip rate around 0.1, and
distances of up to 0.07 between neighboring tiles. Rippled
type has a slip rate around 0.15, and neighboring tiles are up

to 0.03-distant. There is no known similarity between tiles
of different types. We note that the particular values chosen
for the bounds are intended to be merely illustrative.

In order to ensure that the agent does not move outside of
the state space, we added additional border tiles on all sides
of the state space. However, the transition probabilities at the
borders are known and uninteresting, and their introduction
is merely an artificial technical addition. Thus, we will not
be mentioning the borders in the remainder of the section.

The set A of actions consists of five intended movements:
“up”, “down”, “left”, “right”, and “stay in the same position”.
However, because of the possibility of an error, there is
always a positive probability that the agent will end up in a
different neighboring tile than intended.

A. Learning

In this subsection, we concentrate solely on learning of
the transition probabilities. In particular, the agent moves
as follows: it always chooses the intended movement that
should result in it repositioning to the neighboring tile that
has been visited the fewest number of times. Thus, after a
large number of time steps, all tiles will be roughly equally
visited.

We ran the system for 15 million steps, using the
weighted sampling algorithm with the class of weight func-
tions from (6). Fig. 2 presents the maximal error €,,,, =
max, ..« |P(s,a,s') — P(s,a,s')| for n = 0, n = 20,
n = 50, as well as when using the direct sampling algorithm.

0 5 10 15
t %108

Fig. 2. The maximal errors obtained by the weighted sampling algorithm
with wy, (d) = (1 — d)™. The red graph corresponds to errors for n = 0,
green to n = 20, and blue to n = 50. The black graph corresponds to
errors with the direct sampling algorithm. For memory reasons, the path
taken was not saved between the runs for different values of n. Hence, the
paths the agent took might slightly differ, without a significant influence on
the results.

As expected, for lower values of n, the estimates of
transition probabilities converge very quickly, but the error
is higher. As n — oo, the estimates converges more slowly,
but the error gets smaller. Additionally, the simulation results
show that, at smaller numbers of time steps, learning using
the weighted sampling algorithm is more accurate than with
the direct sampling algorithm: for instance, after just 3 x 10°
time steps, the weighted sampling algorithm with n = 20
only produced a maximal error around 0.12, while the error
with the direct sampling algorithm was still around 0.3. The
direct sampling algorithm took around four times as many
time steps as the weighted sampling algorithm with n = 20
to reduce the e,,4, to 0.12.

We note that, even with significant gains compared to
using direct sampling, the number of steps required to learn
the transition probabilities remains on the order of 10°. Such
a high number is a natural consequence of the large number
of system states: |S| = 2500. The required number of steps
could be significantly reduced by heuristically assuming that
some neighboring states, or states belonging to the same
terrain type, have exactly the same transition probabilities.
Nonetheless, the primary goal of this subsection is to shown
that the weighted sampling algorithm, without any additional
heuristics, is already significantly faster than direct sampling.

Finally, as seen in Fig. 2, while short-term behavior of
the weighted sampling algorithm is significantly better than
direct sampling, weighted sampling converges to a non-zero
error. This issue can be resolved by imposing that the weights
w(s,s’) are time-varying, i.e., that at every time step ¢,
the number of collected samples is recomputed with new
wi(s,s"), where wi(s,s’) — 0 for all s # s' as t — oo.
While we do not present a complete analysis of such an
adjustment, it ensures that, for short-term objectives, large
weights are still used, but that, on the other hand, the system
asymptotically behaves in the same way as direct sampling.

B. Control

The simulations presented in this subsection focus on a
control objective of reaching a particular state s* € S. We
want to measure how long it takes an agent to reach the goal
state when it uses BEB with weighted sampling compared
to the standard BEB, with direct sampling.

In the simulations that we conducted, the state space was
a 10 x 10 grid based on the terrain from Fig. 1. Thus,
S = {1,...,10}2. In order to entice the agent to keep
coming closer to the goal state, each state-action pair (s, a)
provides the reward R(s,a) equal to (||s — s*||; + 0.02)~1.
The addition of 0.02 is merely technical, in order to avoid
R(s*,a) = oo. The agent then moves as described prior to
(8). We set the horizon length to H = 2, with 3 = 2H?. We
chose the agent’s initial state to be one of the corners of the
grid, and the goal state to be the diagonally opposite corner.

As in Section V-A, we ran the simulation using the
weighted sampling algorithm with weighting functions
wy(d) = (1 — d)™, for a number of different values of n.
Since the number of time steps necessary to reach the goal
state varies significantly from one system run to another,
the simulation performed 20 runs each weighting function.
Results are shown in Fig. 3.

Introducing weights produced a remarkable speed-up im-
provement of the agent’s efficiency: with direct sampling,
the agent needed around 136 time steps on average to reach
the goal state. For the weighted sampling algorithm with
n = 35, it required around 58. While there is a visible
amount of variance in the average length of runs, which can
be easily attributed to the inherent randomness involved in
the simulation, Fig. 3 confirms that indirect sampling, with a
good choice of a weighting function, can lead to substantial
savings in time necessary to fulfill a control objective.

300
— I o
9 200 - :9)% B
° o
o o o T o
S 100 ° o o 8
o) © o

> 0 0 o O
©

oL \ \ \ \ \ \ \ \ \ \

Fig. 3. The average number of time steps to reach the goal, with w,, as
in (6). The dashed line represents the number of time steps needed when
using direct sampling.

VI. CONCLUSIONS

This paper presents a novel strategy for expediting rein-
forcement learning in MDPs by using side information on
similarities between transition probabilities at different states.
The presented method rests on counting every collected
sample both directly at the state-action pair at which it was
collected, and — with a discounted weight — at state-action
pairs with similar transition probabilities. The optimal choice
of weights depends on the control objective, and determining
the exact relationship between the two remains a crucial open
question. Nonetheless, the theoretical results and numerical
experiments presented in this paper show that the proposed
method leads the system to learn the transition probabilities
and satisfy the control objective significantly faster compared
to algorithms that make no use of side information. Thus,
in addition to open questions outlined within the paper,
designing an analogous method to exploit available side
information in the context of model-free learning constitutes
a fruitful area of future research.

REFERENCES

[1] M. Araya-Lépez, V. Thomas, and O. Buffet, “Near-optimal BRL
using optimistic local transitions,” in 29th International Conference
on Machine Learning, 2012, pp. 97-104.

[2] R.I. Brafman and M. Tennenholtz, “R-MAX — a general polynomial
time algorithm for near-optimal reinforcement learning,” Journal of
Machine Learning Research, vol. 3, pp. 213-231, 2002.

[3] J. L. Bresina, A. K. Jonsson, P. H. Morris, and K. Rajan, “Activity
planning for the Mars Exploration Rovers,” in [I5th International
Conference on Automated Planning and Scheduling, 2005, pp. 40—
49.

[4] J. Fu and U. Topcu, “Probably approximately correct MDP learning
and control with temporal logic constraints,” in Robotics: Science and
Systems, 2014.

[5] H. Gao, X. Song, L. Ding, K. Xia, N. Li, and Z. Deng, “Adaptive
motion control of wheeled mobile robot with unknown slippage,”
International Journal of Control, vol. 87, no. 8, pp. 1513-1522, 2014.

[6] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, 2009.

[71 W. Hoeffding, “Probability inequalities for sums of bounded random
variable,” Journal of the American Statistical Association, vol. 58, no.
301, pp. 13-30, 1963.

[8] M. Kearns and S. Singh, “Near-optimal reinforcement learning in
polynomial time,” Machine Learning, vol. 49, pp. 209-232, 2002.

[9] J. Z. Kolter and A. Y. Ng, “Near-Bayesian exploration in polynomial
time,” in 26th International Conference on Machine Learning, 2009,
pp. 513-520.

[10] M. Mohammadi and A. M. Shahri, “Adaptive nonlinear stabilization
control for a quadrotor UAV: Theory, simulation and experimentation,”
Journal of Intelligent & Robotic Systems, vol. 72, no. 1, pp. 105-122,
2013.

[11] M. Ono, B. Rothrock, E. Almeida, A. Ansar, R. Otero, A. Huertas, and
M. Heverly, “Data-driven surface traversability analysis for Mars 2020
landing site selection,” in 2016 IEEE Aerospace Conference, 2016, pp.
1-12.

[12] Z. Peng, D. Wang, Z. Chen, X. Hu, and W. Lan, “Adaptive dynamic
surface control for formations of autonomous surface vehicles with un-
certain dynamics,” IEEE Transactions on Control Systems Technology,
vol. 21, no. 2, pp. 513-520, 2013.

[13] W. Rudin, Real and Complex Analysis. McGraw-Hill, 1987.

[14] A. L. Strehl, L. Li, and M. L. Littman, “Reinforcement learning in
finite MDPs: PAC analysis,” Journal of Machine Learning Research,
vol. 10, pp. 24132444, 2009.

[15] A. L. Strehl and M. L. Littman, “An analysis of model-based interval
estimation for Markov Decision Processes,” Journal of Computer and
System Sciences, vol. 74, no. 8, pp. 1309 — 1331, 2008.

[16] W. R. Tobler, “A computer movie simulating urban growth in the
Detroit region,” Economic Geography, vol. 46, pp. 234-240, 1970.

[17] M. Tracol, J. Desharnais, and A. Zhioua, “Computing distances
between probabilistic automata,” in 9th Workshop on Quantitative
Aspects of Programming Languages, 2011, pp. 148-162.

[18] A. Witze, “Three sites where NASA might retrieve its first Mars rock,”
Nature, vol. 542, no. 7641, pp. 279-280, 2017.

APPENDIX

Outline of the proof of bound (9): Let K C S x A
be the set of known state-action pairs. Every time a policy
m causes the agent to leave K, or remain in the set of
unknown pairs, an estimate update (i.e., sample collection)
occurs. In the direct sampling algorithm, each estimate
update increases exactly one a(s, a) by 1. Thus, if we start
from all ag(s,a) = 0, 0 = m|S||A| estimate updates will
result in all state-action pairs becoming known.

Let us define Ay as the event that 7 results in an escape
from K within H steps. Let P(Ay) denote the probability
of Ay occurring. By a version of the Hoeffding inequality
described in [1], [14], if P(Ax) > ¢/(2H?), the event A
will occur at least o times after O(ocH?/elog(|S||A]/d))
time steps, with probability 1 — 4. Thus, after at most
O(cH?/elog(|S]|A]/9)), all the states will become known,
with probability 1 —d. Now, if P(A) < e/(2H?), which is
certainly true once all states become known, it can be shown
that BEB generates a near-optimal policy in the sense of (1).

Proof of Proposition 6: We will show that all elements
of S x A become known after at most

m (11— p)sl
|A|<(+1)(1p(1 p))+2|S|>

estimate updates. The claim of Proposition 6 then follows
from the same discussion as the proof of bound (9).

Let S = {s1,...,5g/}. Bound (12) is a direct conse-
quence of the following two claims.

Claim 1: Let a € A. Let ® be a sequence of visits to
unknown elements in S x {a} defined as follows: (s1,a) is
visited repeatedly until «g(s1,a) reaches m. Then (s2,a)
is visited until its «g(s2,a) reaches m, and so on, until
ap(si,a) = m for all ¢ € {1,...,|S]}. Let v(®P) be the
length of @, i.e., the total number of visits until all states in
S x {a} are known. Then, v(®) < (m+1)(1—(1—p)I¥!)/p.

Claim 2: Let a € A. Let @' be any sequence of visits to
unknown elements in S x {a}. Then, if ® is as defined in
Claim 1, v(®') < v(®) + 2|S5].

We now give the proofs of the above two claims.

12)

Proof of Claim 1: We note that (s1,a) will be visited
v1 = m times. As a consequence of these visits, all elements
(si,a) will gain v1p samples. Thus, (s2,a) will be visited
vy = [m — vyp] times. Analogously, before the visiting of
(s3,a) starts, it will have gained v1p + vop samples, so it
will be visited v3 = [m — v1p — vop]| times, unless v1p +
vep > m, in which case it will not be visited at all. We
proceed analogously for all (s;, a). The total number of visits
is v(®) = v; + ... + v, where v; are generated by the
recursion v; = [m — vip — ... — v;_1p|, v1 = m, and
r < |S] is such that vy p+. . .4+v,.p > mor r = |S|. From this
recursion, we obtain v(®) = v1+...+v, <wvi+...4v,_1+
m—uvp—...—vppF+l=m+1+(v1+...v.—1)(1—p).
Continuing inductively, we get v < (m+1)(1—(1—p)")/p <
(m+1)(1—(1-p)is)/p.

Proof of Claim 2: The proof proceeds by induction on
|S]. When |S| = 1, there is only one sequence of visits
to unknown elements of |S| x {a}, and it yields v(®') =
v(®). Now, assume that for any m and any |S| < k, any
sequence of visits ® will contain v(®') < v(®)+2|S| visits
to unknown state-action pairs, with ¢ defined as in Claim 2.

Now, suppose that there exists a sequence of visits ®' on
S x {a} with |S| = k + 1 such that

v(®) > v(®) +2(k+1). (13)

Assume that (s1,a) will become known first in &', then
(s2,a), etc. This is taken without loss of generality: if it
is not true, ® as defined in Claim 1 can be modified so that
its order of visits to state-action pairs matches the order in
which the pairs in ®' become known.

Let, for all j € {1,...,k + 1}, (s;,a) become known
under sequence ® after a total of ¢; estimate updates. We
note that t; < to < ... < tgy1 = v(P). With analogous
definitions, t; <15 < ... <) = v(P).

We claim the following:

t)>t;, foralll<j<k+1 (14)

Suppose (14) is incorrect, i.e., t;- < t; for some j. Clearly, by
the inductive assumption, j # k + 1. By the construction of
®, after the ¢;-th update in @, pairs (sj41,a),. .., (Spt1,a)
received exactly ¢;p samples each, as each pair was only
obtaining samples indirectly. On the other hand, in sequence
@', pairs (sj+1,a),. .., (Sg+1,a) have certainly received ¢;p
sample data, but some pairs may also have received direct
samples. Thus, the sample counts ag(s;,a), ¢ > j + 1, are
at least as large when using ®’ as with sequence ®.

Consider now a new state space S = {sj41,...,5¢41}-
Since under sequence & at time ¢; we have ag(s;, k) = t;p,
we can instead reduce m to m = m — t;p and have
ap(si, k) = 0. We note that ag(s;, k) under sequence P,
while nonnegative, might not all equal 0. However, that
does not affect our proof. We also note that there might
exist transition probabilities that force the agent to leave
S. However, as all the other states in S are known after
time ¢;, and we are only interested in counting aq(s;, k) for
i€ {j+1,...,k+ 1}, this possibility does not affect the
remainder of our proof.

By the inductive assumption, any sequence of visits P’ to
unknown states in S x {a} satisfies v(®') < v(®) + 2|5,
where @ is defined as in Claim 1 with respect to S. On
the other hand, we assumed (13) and t;- < t;. Hence, the
remainder of ® after the first ¢; visits is of length strictly
greater than v(®) 4 2(k + 1) — ;. The remainder of @ after
the first ¢; visits is exactly ®. Hence, the remainder of &’
is of length strictly greater than v(®) + t; + 2(k + 1) —
t; > v(®)+2|S|. This is in contradiction with the inductive
assumption. Thus, (14) is proved.

Let us now separate the sample data obtained by @’ into
four categories:

CD’ complete direct samples — samples which were ob-
tained directly (i.e., samples for (s,a) obtained after
playing (s, a)), which did not push ag(s,a) above m,

ID' incomplete direct samples — samples which were ob-
tained directly, and which pushed ay(s,a) above m,

CI' complete indirect samples — indirectly collected sam-
ples which did not push «q(s,a) above m,

II' incomplete indirect samples — indirectly collected sam-
ples which pushed « (s, a) above m.
Hence, the amount of samples need not be an integer. We
claim the following holds:

CD' +ID' +CI' + IT' = m(k + 1), (15a)
tye1 > CD + 1D, (15b)

II' <k+1, (15¢)

kp>(th+...+t,_, +t,)p—CI' >0, (15d)
to1 <CD +k+1. (15¢e)

Statements (15a), (15b), (15¢), and (15¢) are obvious. For
(15d), we note that in the first ¢} visits made by ®’, each
visit generated indirect samples for k states. It is possible
that (s1,a) became known by way of an indirect sample,
which was then possibly incomplete, but all other samples
are complete. Hence, before ¢}, ®' produced at least kpt} —p
complete indirect samples. By continuing analogously for ¢
and onwards, we obtain between kp(t; — 1)+ (k — 1)p(t; —
th—=1)+...+p(t,—t,_;—1)=pt, +...4+t},) — pk and
p(th + ... +1t},) complete indirect samples.

We analogously separate the samples obtained by ® into
CD, ID, CI, and II. Analogous claims to (15a)—(15e) hold
for these values.

From (14) and (15d) we obtain that

CI' >ty +...+t,)p—kp
>+ +...+{t+1)p—kp>CI.
Now, we have
0(®) + 2|S| = tps1 +2|S| > m|S| — CI — IT +2|S|
>m|S| - CI' + (|S| — II) + |S]
>II'+ID + CD' +|S| >t} = v(P),

(16)

a7

where the first line follows from (15a) and (15b), second line
from (16), and third line from (15a), (15¢), I1’,ID’ > 0, and
(15e). Claim (17) contradicts assumption (13). |

